

UNIVERSITY OF THESSALY School of Medicine Laboratory of Biomathematics

Analysis of Genetic Association Studies

References:

Zintzaras E. The power of generalized odds ratio in assessing association in genetic studies with known mode of inheritance. J Appl. Stat. 2012. DOI:10.1080/02664763.2012.722611

Zintzaras E, Santos M. Performance of MAX test and degree of dominance index in predicting the mode of inheritance. Stat Appl Genet Mol Biol. 2012 Jun 27;11(4):Article 4. doi: 10.1515/1544-6115.1804. PubMed PMID: 22745022.

Zintzaras E, Santos M. Estimating the mode of inheritance in genetic association studies of qualitative traits based on the degree of dominance index. BMC Med Res Methodol. 2011 Dec 21;11(1):171. [Epub ahead of print] PubMed PMID: 22188898.

Zintzaras E, Santos M, Szathmary E. Selfishness versus functional cooperation in a stochastic protocell model. J Theor Biol. 2010 Dec 21;267(4):605-13. Epub 2010 Sep 17. PubMed PMID: 20837027.

Zintzaras E. The generalized odds ratio as a measure of genetic risk effect in the analysis and meta-analysis of association studies. Stat Appl Genet Mol Biol 2010; Vol. 9: Iss. 1, Article 21.

Genetics background

- <u>Genetics</u> is the science that studies the heredity of traits
- <u>Genetic information</u> is contained in DNA which consists of nucleotides
- <u>Gene</u> is a sequence of nucleotides that translates a protein
- Genes (through proteins) determine <u>traits</u> (phenotypes)
- A gene may have different forms called <u>alleles</u>
- An allele can be <u>mutant type-*mt* (change in nucleotudes</u>) or <u>wild type-*wt*</u>
- For each gene there are <u>two alleles</u> due to diploidy of humans (homologous chromosome pairs)
- In an individual the genotype distribution of gene can be <u>homozygous</u> (*wtwt* or *mtmt*) or <u>heterozygous</u> (*wtmt*)
- The multiple alleles of a gene is called <u>polymorphism</u> or variant (preserved mutations), they usually expressing different phenotypes

Genetic association studies (GAS)

The evaluation of possible associations between phenotypic traits (diseases) and genetic variants (gene polymorphisms) is carried out using GAS

In the case of a genetic variant with two alleles (mutant type-*mt* and wild type-<u>wt</u>), where <u>*mt*</u> is thought to be <u>associated</u> with a <u>disease</u>, GAS will collect information on the numbers of diseased subjects and control subjects with each of the three genotypes (*wt/wt*, *wt/mt*, *mt/mt*)

Study quality assessment

- Prior to testing the association, the quality of a study should be assessed
- A study quality surrogate point is whether the controls conform with the HWE rule in the controls
- Lack of HWE implies: genotyping errors and/or structure in the population (i.e. non-unselected controls)

Departure for HWE is tested using a x²-test.

Genotype	Cases with CAD	Controls
mt/mt	1788	874
mt/wt	4145	2165
wt/wt	2328	1335

In HWE, the genotype distribution should follow the following rule: wt/wt: mt/wt: mt/mt =p²:2pq:q²

where **p** is the frequency of the wt alleles and **q=1-p** is the frequency of the mt alleles.

P=0.944

P>0.05, thus the controls are in HWE.

The URL http://www.had2know.com/academics/hardy-weinberg-equilibrium-calculator-2-alleles.html provides a calculator for testing HWE

 Association is tested using a x²-test and the magnitude of association is expressed in terms of odds ratio (OR) Example: In a GAS with 8261/4374
cases/controls, the association between ACE
D/I (wt/mt) and CAD investigated. The
genotype distribution was as follows:

Genotype	Cases with CAD	Controls
mt/mt	1788	874
mt/wt	4145	2165
wt/wt	2328	1335

The association between disease status and the genetic variant is tested using a chi-squared (x²) test with (3-1)x(2-1)=2 df

 Example: In a GAS with 8261/4374 cases/controls, the association between ACE D/I (wt/mt) and CAD investigated. The genotype distribution was as follows:

Genotype	Cases with CAD	Controls
mt/mt	1788	874
mt/wt	4145	2165
wt/wt	2328	1335

To perform a chi-squared test, access the URL: <u>http://www.quantpsy.org/chisq/chisq.htm</u>, enter the data of the GAS in the cells, and type "Calculate"

P-value=0.010

There is significant association between ACE D/I gene variant and development of CAD

When the association is significant, various genetic models of genotypes are tested by omitting or merging genotypes

These models include:

• additive model:

homozygous for mt vs. homozygous for wt

• co-dominant model:

heterozygous vs. all homozygotes

The significance of the genetic model is assessed using the respective odds ratio (*OR*) and its 95% confidence interval (CI).

The OR for the additive model is

OR = "probability" a subject of being diseased when mtmt "probability" a subject of being diseased when wtwt

For *OR*>1: an *mtmt* subject has greater chance of being diseased than a *wtwt* subject

If the 95% CI does not include 1, then, the OR is significant (P<0.05) (i.e. the variant is associated with the disease).

Additive model:

 Genotype
 Cases with CAD
 Controls

 mt/mt
 1788
 874

 wt/wt
 2328
 1335

 $OR = \frac{"\ probability"\ a\ subject\ of\ being\ with\ CAD\ when\ mtmt}}{"\ probability"\ a\ subject\ of\ being\ with\ CAD\ when\ mtmt}} = \frac{\frac{1788}{1335}}{\frac{11335}{874}} = 1.17$ 95%CI = $(e^{\ln(OR) - 1.96^* \sqrt{\frac{1}{1788} + \frac{1}{2328} + \frac{1}{874} + \frac{1}{1335}}, e^{\ln(OR) + 1.96^* \sqrt{\frac{1}{1788} + \frac{1}{2328} + \frac{1}{874} + \frac{1}{1335}}}) = (1.06, 1.30)$

Since "1" is not included in the 95% CI, we conclude that the OR is significant (P<0.05).</p>

Since OR>1, we conclude that homozygous for the mt allele have 17% greater risk for CAD than homozygous for the wt allele

The OR for the co-dominant model is

OR = "probability" a subject of being diseased when wtmt "probability" a subject of being diseased when else

For *OR*>1: an *wtmt* subject has greater chance of being diseased than an homozygous subject

If the 95% CI does not include 1, then, the *OR* is significant (P<0.05) (i.e. the variant is associated with the disease).

Co-dominant model:

Genotype Cases with CAD Controls *mt/wt* 4145 2165 *mt/mt+wt/wt* 1788+2328=4116 874+1335=2209

 $OR = \frac{"probability" \ a \ subject \ of \ being \ with \ CAD \ when \ mtwt}{"probability" \ a \ subject \ of \ being \ with \ CAD \ when \ wtwt \ + \ mtmt}} = \frac{\frac{4145}{2165}}{\frac{2165}{4116}} = 1.03$ $95\%CI = (e^{\ln(OR) - 1.96*\sqrt{\frac{1}{4145} + \frac{1}{4116} + \frac{1}{2165} + \frac{1}{2209}}}, e^{\ln(OR) + 1.96*\sqrt{\frac{1}{4145} + \frac{1}{4116} + \frac{1}{2165} + \frac{1}{2209}}}) = (0.96, 1.11)$

Since "1" is included in the 95% CI, we conclude that the OR is not significant (P≥0.05).

Pharmacogenetic Studies

In the PG studies, we investigate the association of

i) a gene expression as a binary variable or
ii) a gene expression as a continuous variable or
iii) a gene polymorphism

and clinical outcome in patients after treatment with approved therapy

i) Example: MDR1 gene overexpression is considered to be a major cause of multidrug resistance and it is implicated in the response to chemotherapy in AML patients. In a PG study, the association of MDR1 gene expression and response to chemotherapy in patients with AML has been investigated. The results were as follows:

mRNA expression levels mean±SD Responders (N=37): 1.4±2.7 Non-responders (N=15): 0.3±0.5

Is the response to treatment associated with MDR1 mRNA expression levels?

We may use the online t-test at the URL

http://www.quantitativeskills.com/sisa/statistics/t-test.htm

for testing the equality of the two means.

P=0.057, indicating that MDR1 expression levels are different between Responders and Non-responders. ii) Example: In a PG study, the association of MDR1 gene expression and response to chemotherapy in patients with AML has been investigated. The results were as follows:

mRNA expression levels

	+Ve	-ve
Responders	27	22
Non-responders	21	5

Is the response to treatment associated with MDR1 mRNA expression levels?

The association between response to treatment and MDR1 mRNA expression levels is tested using a chi-squared test.

To perform the chi-squared test, access the URL: http://www.quantpsy.org/chisq/chisq.htm, enter the data of the PG study in the cells, and type "Calculate"

P=0.027

There is significant association between response to treatment and MDR1 mRNA expression levels

OR= Prob. of being Responders when -ve mRNA expression/ Prob. of being Responders when +ve mRNA expression

OR=(22/5)/(27/21)=3.42

The 95% CI is $(e^{\ln(OR)-1.96^*SE}, e^{\ln(OR)-1.96^*SE})$ where SE= $\sqrt{(1/22 + 1/5 + 1/27 + 1/21)}=0.575$ Thus, the 95% CI is (1.11, 10.56) iii) Example: In a PG study, the association of MDR1 C3435T gene polymorphism and response to chemotherapy in patients with AML has been investigated. The results were as follows:

	MDR1 C3435T genotype			
	CC	CT	TT	
Responders	158	65	39	
Non-responders	13	18	9	

Is the response to treatment associated with the MDR1 C3435T gene polymorphism?

The association between response to treatment and MDR1 C3435T gene polymorphism is tested using a chi-squared test.

To perform the chi-squared test, access the URL: http://www.quantpsy.org/chisq/chisq.htm, enter the data of the PG study in the cells, and type "Calculate"

P=0.004

There is significant association between response to treatment and MDR1 C3435T gene polymorphism