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Basic Statistical Terms



▪ In medical research and clinical practice, we collect data from 
a sample of individuals to draw conclusions about the broader 
population to which the sample belongs

▪ Example: If we want to investigate the relationship between a 
pregnant woman's weight gain during pregnancy and the 
weight of the newborn, we need to study a sample of 
pregnant women. It is not possible to study all pregnant 
women

Basic Statistical Terms



The following are some of the most basic terms used in statistical 
methodology:

▪ Population: a population is the entire group that you want to draw 
conclusions about

▪ Sample: a sample is a subset of individuals, items, or observations selected 
from a larger group or population

▪ Variable (denoted as X or x): a variable is any characteristic, number, or 
quantity that can be measured or counted, such as body weight gain

▪ Observation: an observation is a value of something of interest you're 
measuring or counting during a study or experiment: a person's height

Basic Statistical Terms



Types of variables

A variable is qualitative when it takes discrete values and quantitative

when it takes values on a continuous scale

▪ Qualitative variables include gender (e.g. male, female), hemoglobin 

stabilization in kidney patients (e.g. stabilized, not stabilized), survival 

(e.g. survives, dies), treatment outcome (e.g. improved, not improved), 

and amount of medicine taken (e.g. small, medium, large)

▪ Quantitative include height, weight, blood pressure, age, and so on



Null and alternate hypothesis

▪ Null hypothesis (H0):
The null hypothesis is a statement that there is no effect, no difference, or no relationship between 
variables. The null hypothesis is typically the default or baseline hypothesis that researchers seek to test 
against

Example: In a clinical trial comparing a new drug to a placebo, the null hypothesis might state: "There is no 
difference in effectiveness between the new drug and the placebo"

▪ Alternative hypothesis (H1):
The alternative hypothesis is a statement that indicates the presence of an effect, difference, or 
relationship between variables. The alternative hypothesis is considered if the null hypothesis is rejected 
based on the data.

Example: Using the same clinical trial, the alternative hypothesis might state: "The new drug is more 
effective than the placebo. Alternatively, there is a difference in the effect between the two drugs"



Graphical Methods of Data Description



Data visualization

It is important to 
always start the 
analysis with a graph 
to visualize the data



Bar charts

To show the frequency of a qualitative variable, we use a bar chart.

Example: 600 patients participated in a clinical study. Their responses to the 
treatment were categorized as good, fair, or poor. The qualitative variable 
investigated in this study is the response to treatment.

Response N

Good 478

Fair 65

Poor 57

Total 600



The height of each bar is proportional to the corresponding frequency



Relative and Percent Frequencies

▪ The previous frequency table provides us with some information. 
For example, the value Good has a frequency of 478 (i.e., 478 
patients had a good response to treatment)

▪ However, this frequency (i.e., the number 478) has limited 
meaning on its own if the total number of patients who 
participated in the treatment is not reported

▪ To find the relative frequency of a value, we divide the frequency 
of that value by the total number of observations

▪ We can then express this result as a percentage (%)



Relative and Percent Frequencies

Percent frequency =
Frequency of value

𝑛
∙ 100

Relative frequency =
Frequency of value

𝑛



Relative and Percent Frequencies

Relative frequency “Good”=
478

600

Relative frequency “Good” = 0.797

Percent frequency “Good”= 0.797 ∙ 100

Percent frequency “Good” = 79.7%



Response N Percent Frequencies
(%)

Good 478 79.70%

Fair 65 10.80%

Poor 57 9.50%

Total 𝟔𝟎𝟎 𝟏𝟎𝟎%



The height of each bar is proportional to the corresponding relative frequency





Pie chart
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A pie chart is a circle divided into slices, where each slice represents the values of a 
variable for different categories.

Example: The pie chart below shows the age distribution of the population in a city
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Histograms

▪ When the variable we are studying is quantitative, we 
construct a frequency distribution represented by a 
histogram

▪ If there are many values, we group them into 5-8 bins 
(groups)

▪ The horizontal axis (x-axis) represents the variable of 
interest, such as hemoglobin, age, etc.

▪ On the vertical axis (y-axis), we plot the simple frequencies, 
relative frequencies, or percentage frequencies



Histograms

▪ It is the most useful graphical representation of 
quantitative data

▪ A histogram shows the shape of the data distribution
▪ Each bar (rectangle) represents a group (bin) of data values
▪ The height is determined by the frequency, relative 

frequency, or percent frequency of the observations in that 
bin

▪ Unlike bar charts, there are no gaps between the bars in a 
histogram



Skew

A histogram indicates the 
skewness or symmetry of the 
data distribution

Example: The distribution of 
systolic blood pressure values 
among elderly people is 
positively skewed (right 
skewed), while the distribution 
of hemoglobin (Hgb) levels 
among 20 women is symmetric

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

Symetric Uniform

Right skew Left skew



How to create a histogram

Example: The cholesterol levels of 60 subjects in a clinical trial were measured

212 249 227 218 310 281 330 226
233 223 161 195 233 249 284 284
174 170 256 169 299 210 301 199
258 258 195 227 244 355 234 195
196 354 282 282 286 286 176 195
163 297 211 228 309 309 225 223
195 248 284 173 256 169 209 209
200 258 284 239









Grouping values into eight class intervals (classes or bins)

▪ First, we select the number of class intervals, 𝒌 = 𝟖
▪ Next, we calculate the width of the class intervals

𝒄 =
𝑹

𝒌
=

𝟑𝟓𝟓−𝟏𝟔𝟏

𝟖
=

𝟏𝟗𝟒

𝟖
= 𝟐𝟒. 𝟐𝟓 ≅ 𝟐𝟓.

▪ Finally, we determine the class intervals

Minimum xmin = 161
Maximum xmax= 355

Class intervals Central value Class frequency Relative frequency (%)

[160.5—185.5) 173 8 13.33

[185.5—210.5) 198 11 18.33

[210.5—235.5) 223 13 21.67

[235.5—260.5) 248 10 16.67

[260.5—285.5) 273 6 10.00

[285.5—310.5) 298 7 11.67

[310.5—335.5) 323 3 5.00

[335.5—360.5) 348 2 3.33

Total 60 100



Right skewed



Another histogram example

Example: The 
hemoglobin levels 
(g/100 ml) of 20 
women were measured 
and are as follows:



Frequency curve
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The histogram, for practical purposes, can be represented by a curve constructed by 
joining the midpoints of the tops of the rectangles (bars) in the histogram, forming 
what is called a frequency curve



Normal distribution

By increasing the sample size and constructing the histogram with smaller and smaller 
class widths, the corresponding polygon approaches a smooth curve

▪ The normal curve is bell-shaped, symmetrical, and its tails approach the horizontal axis 
smoothly. The mean and median are the same

▪ The area with the highest density is in the middle of the distribution. In other words, 
when the values of a variable are normally distributed, there are many values around the 
mean, while there are relatively few values far from the mean



Why do normal distributions matter?

▪ All kinds of variables in natural and social sciences are normally 
or approximately normally distributed. Some examples of these 
variables are height, birth weight, and work satisfaction.

▪ Because normally distributed variables are so common, many 
statistical tests are designed for normally distributed 
populations

▪ Understanding the properties of normal distributions means you 
can use inferential statistics to compare different groups and 
make estimates about populations using samples



Normal distribution

Example:

▪ Height of Greek people, aged 18 
to 25 years

▪ Normally distributed
▪ Average height: 170 cm
▪ Standard deviation: 5 cm
▪ Given this distribution, there are 

more people with heights 
between 170 cm and 175 cm 
than between 180 cm and 185 
cm

▪ Additionally, very few people are 
taller than 185 cm or shorter 
than 155 cm



Normal distribution

▪ Around 68% of values are within 1σ standard deviation from the mean μ (𝜇 − 𝜎, 𝜇 + 𝜎).
▪ Around 95% of values are within 2σ standard deviations from the mean μ (𝜇 − 2𝜎, 𝜇 + 2𝜎).
▪ Around 99.7% of values are within 3σ standard deviations from the mean μ (𝜇 − 3𝜎, 𝜇 − 3𝜎).



Scatter plot

When there are observations from two quantitative variables and we are interested in the relationship between 
them, the data is presented using a scatter plot

Example: The body weight and plasma volume of 8 healthy men are:

ID Weight in Kg (x) Plasma volume in lt (y)

1 58 2.75

2 70 2.86

3 74 3.37

4 63.5 2.76

5 62 2.62

6 70.5 3.49

7 71 3.05

8 66 3.12



WEIGHT (kg)

PL
AS

MA
 VO

LU
ME

 (lt
)

(58;2,75)

(70;2,86)

(74;3,37)

(63,5;2,76)

(62;2,62)

(70,5;3,49)

(71;3,05)

(66;3,12)

2,5

2,7

2,9

3,1

3,3

3,5

3,7

56 60 64 68 72 76



Box plot

▪ A box plot is an easy way to 
graphically display the shape
of the data

▪ Easy to interpret
▪ It shows if the data is skewed
▪ It helps to find outliers
▪ Box plots are useful for 

comparing different groups



Box plot

▪ A box plot displays data with a rectangular box and whiskers extending from it
▪ The top of the box represents the 75th percentile 

(third quartile), and the bottom represents the 
25th percentile (first quartile)

▪ The median is shown by a horizontal line within 
the box

▪ The whiskers extend to the maximum and 
minimum values

Example: Using data from plasma volumes,
the following box plot is produced.
Note that the value 7.32 is considered 
an outlier and is therefore excluded.

Non-Outlier Max = 3,

Non-Outlier Min = 2,

75% = 3,43

25% = 2,755

Median = 2,955
2,5

2,7

2,9

3,1

3,3

3,5

3,7

LT



Box plot versus histogram

Box plot (with Interquartile 
Range - IQR) and Probability 
Density Function (PDF) for a 
normal distribution N(0, σ2)



Q1

Q3

Q2

Upper Limit

Lower Limit

Approximately the 95% confidence interval (CI)

Because the two box plots overlap, it 
indicates that there are no differences 
between the two groups.

If the right box plot were positioned 
higher than the left one in this graph, 
without overlapping, it would indicate 
that these two groups differ in terms of 
cholesterol levels.



Quantitative Methods of Data Description



Numerical descriptive measures

▪ Measures of variation

Median

Mean

Quartiles

Percentiles

Range

Variance

Standard deviation

▪ Measures of central tendency



Mean

The simplest way to describe a set of observations from a continuous variable 

is the mean, which is the sum of all observations divided by the number of 

observations

Example: The plasma volumes of 8 healthy men are:

2.75 lt 2.86 lt 3.37 lt 2.76 lt 2.62 lt 3.49 lt 3.05 lt 3.12 lt

x1=2.75, x2=2.86, x3=3.37, x4=2.76, x5=2.62, x6=3.49, x7=3.05, x8=3.12



Mean

The sum of the values is: 

σ𝑥 = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 2.75 + 2.86 + 3.37 + 2.76 + 2.62 + 3.49 + 3.05 + 

3.12 = 24.02

The number of observations is n = 8

Therefore, the mean is calculated as follows:

ҧ𝑥 =
σ 𝑥

𝑛
=

2.75 + 2.86 + 3.37 + 2.76 + 2.62 + 3.49 + 3.05 + 3.12
8

=
24.02

8
=

3.0025



Median – Percentiles - Quartiles

▪ When there are one or more extremely small or large observations, 
the mean is not the best way to describe the data

▪ In such cases, the observations are best described by the median or 
50th percentile

▪ To find the median, the observations are sorted in numerical order 
(smallest to largest)

▪ If the number of observations is odd, the median is the middle 
observation

▪ If the number of observations is even, the median is the average of 
the two middle values



Median (odd number of observations)

Example: The maximal inspiratory pressure, in cmH20, (PImax) of 9 cystic fibrosis patients is:

1 2 3 4 5 6 7 8 9

80 85 110 95 95 100 45 95 130

The numbers are ordered from smallest to largest:

1 2 3 4 5 6 7 8 9

45 80 85 95 95 95 100 110 130

Then, the median is the middle value which is the 5th value since
9

2
= 4.5 ≅ 5 . Therefore, the median is

95
1 2 3 4 5 6 7 8 9

45 80 85 95 95 95 100 110 130



Median (even number of observations)

Example: The plasma volumes of 8 healthy men are :

1 2 3 4 5 6 7 8

2.75 2.86 3.37 2.76 2.62 3.49 7.32 3.05

The numbers are ordered from smallest to largest:

1 2 3 4 5 6 7 8

2.62 2.75 2.76 2.86 3.05 3.37 3.49 7.32

Then, the median is the average of the 4th and 5th value, which is

median = (2.86 + 3.05)/2 = 2.96



Percentiles - Quartiles

1 2 3 4 5 6 7 8

2.62 2.75 2.76 2.86 3.05 3.37 3.49 7.32

Where:

𝐿 is the position in the sorted data
𝑝 is the percentile we are looking for
𝑛 is the number of observations

25ο (Q1) 50ο (Q2) 75ο (Q3)

𝐿 =
𝑝

100
(𝑛 + 1)



Percentiles - Quartiles

𝑄2 = 2.86 + 0.5 3.05 − 2.86 = 2.955 = 2.96

𝐿25 =
25

100
8 + 1 = 2.25 𝐿50 =

50

100
8 + 1 = 4.5 𝐿75 =

75

100
8 + 1 = 6.75

1 2 3 4 5 6 7 8

2.62 2.75 2.76 2.86 3.05 3.37 3.49 7.32

25ο (Q1) 50ο (Q2) 75ο (Q3)

𝐿50 = 4.5

We see that the median is halfway (0.5) between the 4th and 5th observations, whose values are 2.86 
and 3.05, respectively, so:



Percentiles - Quartiles

𝑄1 = 2.75 + 0.25 2.76 − 2.75 = 2.7525 = 2.75

1 2 3 4 5 6 7 8

2.62 2.75 2.76 2.86 3.05 3.37 3.49 7.32

25ο (Q1) 50ο (Q2) 75ο (Q3)

𝐿25=2.25

We see that first percentile (𝑄1) is a quarter (0.25) of the way between the 2nd and 3rd observation, 
whose values are 2.75 and 2.75, respectively, so:



Percentiles - Quartiles

𝑄3 = 3.37 + 0.75 3.49 − 3.37 = 3.46

1 2 3 4 5 6 7 8

2.62 2.75 2.76 2.86 3.05 3.37 3.49 7.32

25ο (Q1) 50ο (Q2) 75ο (Q3)

𝐿75=6.75

We see that the third percentile (𝑄3) is three quarters (0.75) of the way between the 6th and 7th

observation, whose values are 3.37 and 3.49, respectively, so:



Percentiles - Quartiles

1 2 3 4 5 6 7 8

2.62 2.75 2.76 2.86 3.05 3.37 3.49 7.32

25ο (Q1) 50ο (Q2) 75ο (Q3)

2.75 2.96 3.46
Therefore:

Approximately 25% of 8 healthy adult men have a plasma volume of 2.75 or less.
Approximately 50% of 8 healthy adult men have a plasma volume of 2.96 or less.
Approximately 75% of 8 healthy adult men have a plasma volume of 3.46 or less.

We use the term 'approximate' because these values are not directly within the data.



Measures of variation

▪ But we also need a measure of data variation
▪ The mean value alone does not allow us to differentiate

between samples



Range

▪ The range is the difference between the largest and smallest observation 
▪ However, it does not show how the remaining observations are distributed between 

these two

Example: The plasma volumes of 8 healthy men are:

2.75, 2.86, 3.37, 2.76, 2.62, 3.49, 3.05, 3.12 lt

Range = max-min = 3.49 - 2.62 = 0.87

The range generally gives us a good indicator of variability when you have a distribution 
without extreme values



Variance (𝜎2 or 𝑠2) and Standard Deviation

Samples with the same mean

Different spread of data

Sample #1 Sample #2

1 20 40

2 30 43

3 40 44

4 50 46

5 60 47

6 70 50

Mean #1 Mean #2

ҧ𝑥 = 45 ҧ𝑥 = 45



20 30 40 50 60 70

Sample #1 

20 30 40 50 60 70

Sample #2 

45

45

Question: What do these two plots tell us about the variance of the data?

Answer: While both have the same mean, Sample #1 shows greater variability

Variance (𝜎2 or 𝑠2) and Standard Deviation



Variance (𝜎2 or 𝑠2) and Standard Deviation

▪ How far is each point from the mean? (DISTANCE)
This is the question that variance and standard deviation help us answer

▪ The standard deviation is simply the square root of the variance, making it easy to calculate
▪ If some points are close to the mean, the variance and standard deviation will be smaller than for points 

that are further away from the mean
▪ The mean, variance, and standard deviation are very important when comparing data sets (t-test, 

anova) or when comparing a data set with a theoretical value
▪ However, since variance is the square of the differences from the mean, it can be less intuitive. 

Therefore, we often use the standard deviation to express variance
▪ Both measures reflect variability in a distribution, but their units differ: Standard deviation is expressed 

in the same units as the original values (e.g., minutes or meters). Variance is expressed in much larger 
units (e.g., meters squared)

▪ Symbols
▪ Mean ҧ𝑥 (x-bar)
▪ Variance 𝜎2 ή 𝑠2

▪ Standard Deviation 𝜎 ή 𝑠

Note: We are using the sample variance, not the population variance



Variance (𝜎2 or 𝑠2) and Standard Deviation

𝑠 = 𝑠2𝑠2 =
σ 𝑥 − ҧ𝑥 2

𝑛 − 1

Variance Standard Deviation



Plasma 
volume

𝑥

Mean
ҧ𝑥

Plasma volume – Mean
𝑥 − ҧ𝑥

𝑥 − ҧ𝑥 2

1 2.75 3.0025 -0.2525 0.063756

2 2.86 3.0025 -0.1425 0.020306

3 3.37 3.0025 0.3675 0.135056

4 2.76 3.0025 -0.2425 0.058806

5 2.62 3.0025 -0.3825 0.146306

6 3.49 3.0025 0.4875 0.237656

7 3.05 3.0025 0.0475 0.002256

8 3.12 3.0025 0.1175 0.013806

𝑠2 = (0.063756 + 0.020306 + 0.135056 +
0.058806 + 0.146306 + 0.237656 + 0.002256 +
0.013806) / 7 = 0.09685

𝑠 = 0.09685 = 0.311207

𝑠2 =
σ 𝑥 − ҧ𝑥 2

𝑛 − 1

Plasma Volume: Variance and Standard Deviation (𝝈𝟐 και 𝝈)



Sample #1: Variance and Standard Deviation (𝜎2 και 𝜎)

𝑥 ҧ𝑥 𝑥 − ҧ𝑥 𝑥 − ҧ𝑥 2

1 20 45 −25 625

2 30 45 −15 225

3 40 45 −5 25

4 50 45 5 25

5 60 45 15 225

6 70 45 25 625

𝜎2 = (625 + 225 + 25 + 25 + 225 + 625) / 5 = 350

𝜎 = 350 = 18.71

𝜎2 =
σ 𝑥 − ҧ𝑥 2

𝑛 − 1



Sample #2: Variance and Standard Deviation (𝜎2 και 𝜎)

𝑥 ҧ𝑥 𝑥 − ҧ𝑥 𝑥 − ҧ𝑥 2

1 40 45 −5 25

2 43 45 −2 4

3 44 45 −1 1

4 46 45 1 1

5 47 45 2 4

6 50 45 5 25

𝜎2 = (25 + 4 + 1 + 1 + 4 + 25) / 5 = 12

𝜎 = 12 = 3.46

𝜎2 =
σ 𝑥 − ҧ𝑥 2

𝑛 − 1



20 30 40 50 60 70

Sample #1 

20 30 40 50 60 70

Sample #2 

45

45

𝜎 = 18.71

𝜎 = 3.46

Variance and Standard Deviation (𝜎2 και 𝜎)

In general, a smaller standard deviation is usually better 
because it means the data points are closer to the mean, 
showing more consistency and reliability



Standard Error

▪ We draw conclusions about a population by collecting a 
representative sample

▪ Therefore, the mean (x̄) and standard deviation (s) of a sample
are used to estimate the mean (μ) and standard deviation (σ) of 
the population from which the sample is drawn

▪ The mean value of a sample is unlikely to be exactly the same as 
that of the population

▪ A different sample would likely give a different mean, and this 
difference is due to sampling variability



Standard Error

▪ If we collect several independent 

samples of the same size and 

calculate the mean and standard 

deviation of each, then the mean 

of the sample means will 

approximate the population mean

▪ The standard deviation of the 

sample means is equal to 
𝝈

𝒏
, 

where σ is the population standard 

deviation and n is the sample size

DBP of 600 individuals

μ=78 mmHg
σ=9 mmHg

DBP of 20 individuals
ҧ𝑥1

DBP of 20 individuals
ҧ𝑥2

DBP of 20 individuals
ҧ𝑥29

DBP of 20 individuals
ҧ𝑥30

Population

Samples

Random
selection

Random
selection

Random
selection

Random
selection

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛𝑠 𝜇 =
ҧ𝑥1 + ҧ𝑥2 +⋯+ ҧ𝑥29 + ҧ𝑥30

30

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛𝑠 𝑆𝐷 =
σ ҧ𝑥𝑖 − 𝜇 2

𝑛
=

σ

n



Standard Error

▪ The quantity 
𝝈

𝒏
is called the standard error of the sample mean and measures how 

well the population mean is approximated by the sample mean
▪ The standard error (SE) is a function of the variance and the sample size
▪ A large sample with a small variance produces a small standard error
▪ Because we rarely know the population standard deviation σ, we use the sample 

standard deviation s instead

▪ Therefore, the standard error of the mean is estimated by the quantity 𝑠𝑒 =
𝑠

𝑛

𝑠𝑒 =
𝜎

𝑛



Standard Error

Example: The plasma volumes, in liters, of 8 healthy men are:

1 2 3 4 5 6 7 8

2.75 2.86 3.37 2.76 2.62 3.49 7.32 3.05

If the sample size approaches the population size, then the standard error (se) tends to zero

Mean, ഥ𝒙 3.025

Standard Deviation, 𝑠 0.311

Standard Error of the mean, 𝑠𝑒 ҧ𝑥
𝑠𝑒 ҧ𝑥 =

𝑠

𝑛
=
0.311

8
= 0.111


