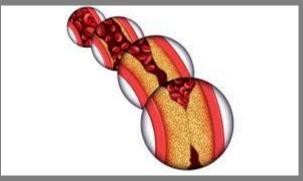
Correlation coefficient


Correlation coefficient

Elias Zintzaras, M.Sc., Ph.D.

Professor in Biomathematics-Biometry Department of Biomathematics School of Medicine University of Thessaly

Institute for Clinical Research and Health Policy Studies Tufts University School of Medicine Boston, MA, USA Theodoros Mprotsis, MSc, PhD Teacher & Research Fellow (http://biomath.med.uth.gr) University of Thessaly Email: tmprotsis@uth.gr

Blood pressure (DBP) and cholesterol levels

Blood pressure (DBP) and cholesterol levels

Suppose 13 people had their blood pressure (DBP) and cholesterol levels (C) measured

We want to test whether there is a **relationship (association)** between DBP and C

Enter the data in the **Data View** and define the variables in the **Variable View**

🝓 *Untitled1 [DataSet0] - IBM SPSS Statistics Da						
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform		
		- A	dbp	🧳 с		
	1		80.00	307.00		
	2		72.00	282.00		
	3		90.00	341.00		
	4		74.00	317.00		
:	5		68.00	286.00		
	6		106.00	416.00		
	7		83.00	326.00		
	8		87.00	379.00		
	9		104.00	389.00		
1	0		78.00	318.00		
1	1	89.00 352.0				
1	2		76.00	287.00		
1	3		96.00	386.00		

Analysis: Bivariate

To test the relationship between the two variables, we need to calculate **the Pearson correlation coefficient**.

From the menu, select Analyze -> Correlate -> Bivariate

Drag the two variables from the left box into the **Variables:** box, select **Pearson** in the **Correlation Coefficients** field, and click **OK**

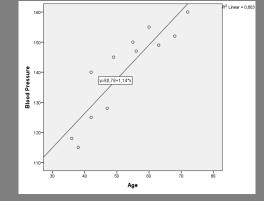
Bivariate Correlations	×			
<u>Variables:</u> ↓ dbp ↓ c	Options Style			
Correlation Coefficients Pearson III Kendall's tau-b III Spearman				
 ▼ rearson				

Results and interpretation

In the **Correlations** table, the **Pearson Correlation coefficient** (r) is 0.938, which is statistically significant (p<0.001)

Thus, there is a strong positive correlation between the diastolic blood pressure and cholesterol levels. This means that as cholesterol levels increases, blood pressure tend also to increase, and the same is true in reverse.

- r = -1, perfect negative correlation
- r = 0, no correlation
- r = 1, perfect positive correlation
- 0.7 < |r| < 1, strong correlation
- 0.5 < |r| < 0.7, moderate correlation
- 0.3 < |r| < 0.5, weak correlation


Correlations

Correlations

		dbp	с
dbp	Pearson Correlation	1	.938 ^{**}
	Sig. (2-tailed)		.000
	N	13	13
с	Pearson Correlation	.938	1
	Sig. (2-tailed)	.000	
	Ν	13	13

**. Correlation is significant at the 0.01 level (2tailed).

Simple linear regression

What is simple linear regression?

- Simple linear regression is a statistical method that allows us to study relationships between two continuous (quantitative) variables
- One variable, denoted x, is regarded as the predictor, explanatory, or independent variable
- The other variable, denoted y, is regarded as the response, outcome, or dependent variable
- In simple linear regression, pairs of values for the two variables x and y are used to fit a straight line that best represents the relationship between them
- The null hypothesis is H₀: there is no linear relationship between the independent variable x and the dependent variable y (β₁=0, where β₁ represents the slope of the regression line)

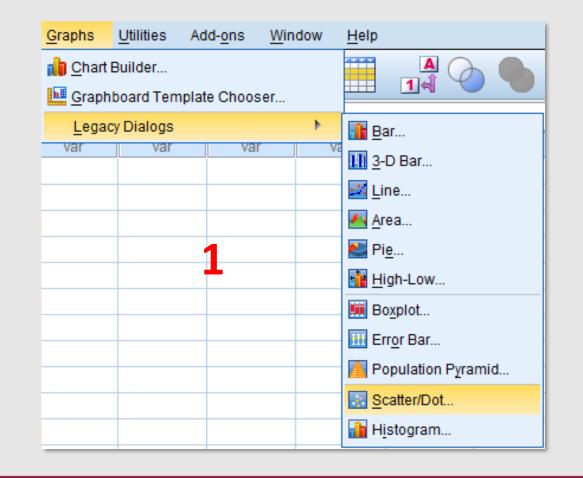
Assumptions

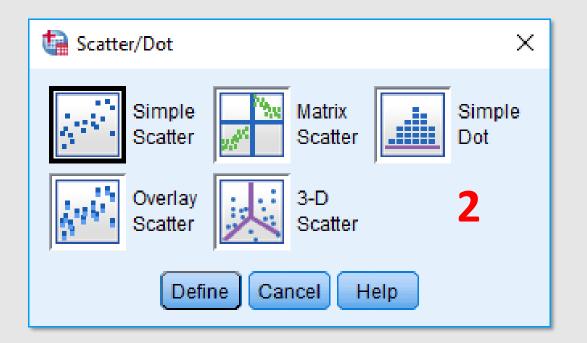
- Your dependent variable should be measured at the continuous level
- Your independent variable should also be measured at the continuous level
- There needs to be a linear relationship between the two variables (scatterplot)
- There should be no significant outliers (boxplot or scatterplot)
- You should have independence of observations (Durbin-Watson statistic)
- The data needs to show homoscedasticity
- The residuals (errors) of the regression line are approximately normally distributed (histogram)

Ages and blood pressure readings from twelve women

The table on the right includes the ages and blood pressure readings from twelve women.

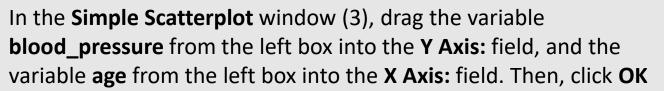
Age (X)	Bloold pressure (Y)
36	118
38	115
42	125
42	140
47	128
49	145
55	150
56	147
60	155
63	149
68	152
72	160

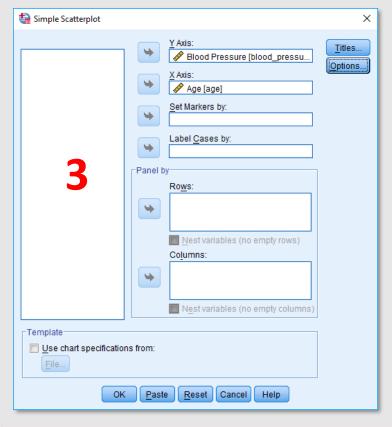

Enter the data in the **Data View** and define the variables in the **Variable View**

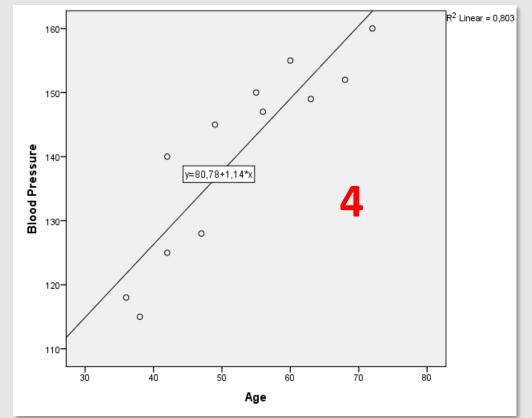

🔚 *Untitled1	[DataSet0] - IBIV	SPSS Statistics Data
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> ı
2 : age	38	
	age	blood_pressure
1	36	118
2	38	115
3	42	125
4	42	140
5	47	128
6	49	145
7	55	150
8	56	147
9	60	155
10	63	149
11	68	152
12	72	160

Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure
age	Numeric	8	0	Age	None	None	8	Right	🔗 Scale
blood_pressure	Numeric	8	0	Blood Pressure	None	None	10	ा Right	🔗 Scale

Scatterplot


First, plot the scatterplot by selecting from the menu Graphs -> Legacy Dialogs -> Scatter/Dot ...





Scatterplot

To display the **regression equation**, double click on the plot, and then select the appropriate icon from the toolbar **P I I I I I I**

Running the analysis

Re <u>p</u> or D <u>e</u> scr Ta <u>b</u> le:	iptive Statistics	۲ ۲	*			
_		•				ξ 📫
Ta <u>b</u> le:	_					è ⊞
	S	•				
Co <u>m</u> p	are Means	•	var	v	ar	var
<u>G</u> ener	ral Linear Model	•				
Gener	rali <u>z</u> ed Linear Model	s 🕨				
Mi <u>x</u> ed	Models	•				
<u>C</u> orre	late	•				
<u>R</u> egre	ssion	•	Autom	atic Linear	Modeling	
L <u>o</u> glin	ear	•	Linear			
Class	ify	•		Estimatior	1	
<u>D</u> imer	nsion Reduction	•		Least Squ		
Sc <u>a</u> le		•		_	10100	
<u>N</u> onpa	arametric Tests	•		Logistic		
Forec	as <u>t</u> ing	•	Multinomial Logistic			
<u>S</u> urviv	al	•	👪 Or <u>d</u> ina	al		
Multiple Response		•	🚠 <u>P</u> robit.			
🖶 S <u>i</u> mula	ation		🔣 <u>N</u> onlin	ear		
Quality Control		•	🔣 Weight Estimation			
ROC	Cur <u>v</u> e		2-Stag	e Least So	quares	
			Optim	al Scaling	(CATREG).	

To analyze the data, select **Analyze -> Regression -> Linear** from the menu. Drag the variable **blood_pressure** from the left box into the **Dependent:** field, and the variable **age** from the left box into the **Independents(s):** box

tinear Regression		×			
Age [age]	Dependent: Blood Pressure [blood_press] Block 1 of 1 Previous Next Independent(s): Age [age] Method: Enter Selection Variable: Rule	Statistics Plots Save Options			
	Case Labels:				
OK Paste Reset Cancel Help					

R, R^2

Model Summary					
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	
1	,896 ^a	,803	,783	7,018	

a. Predictors: (Constant), Age

- r = -1, perfect negative correlation
- r = 0, no correlation
- r = 1, perfect positive correlation
- 0.7 < |r| < 1, strong correlation
- 0.5 < |r| < 0.7, moderate correlation
- 0.3 < |r| < 0.5, weak correlation

	ANOVA ^a						
Model		Sum of Squares	df	Mean Square	F	Sig.	
1	Regression	2008,200	1	2008,200	40,778	,000 ^b	
	Residual	492,467	10	49,247			
	Total	2500 667	11				

a. Dependent Variable: Blood Pressure

b. Predictors: (Constant), Age

- In the **Model Summary** table the **R** value represents the simple correlation and is 0.869, which indicates a high degree of correlation
- To **R Square** indicates how much of the **total variation** in the dependent variable **can be explained** from the independent variable. In this **regression model**, **80.3%** can be explained, which is very large

- The ANOVA table, reports how well the regression equation fits the data (i.e., predicts the dependent variable)
- This table indicates that the regression model predicts the dependent variable significantly well (p<0.001) (i.e., it is a good fit for the data)

Regression model equation

The **Coefficients** table provides us with the necessary information to predict blood pressure from age

Coefficients ^a						
Unstandardized Coefficients			Standardized Coefficients			
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	80,778	9,544		8,464	,000,
	Age	1,138	,178	,896	6,386	,000,

a. Dependent Variable: Blood Pressure

- The value +1.138 is the slope of the line. It represents the effect of the independent variable (age) on the dependent variable (blood pressure)
- Each additional year of age is associated with an increase of 1.138 mm Hg in blood pressure
- Thus, for an increase in age of 10 years, the estimated mean blood pressure increases by 11.38 mm Hg

The regression model formula is

$$y = a + b * x$$

where

- $oldsymbol{y}$ is the dependent variable (blood pressure)
- $m{x}$ is the independent variable (age)
- *a*, *b* are the parameters of the regression
 model, with *a* being the intercept and *b* being the slope

blood pressure = **80**. **778** + **1**. **138** × Age

Reporting the results

We found a significant relationship (p<0.001) between age and blood pressure, with an R² of 0.803. This suggests that age accounts for approximately 80.3% of the variance in blood pressure. Additionally, the result indicate that each additional year of age is associated with an increase of 1.138 mm Hg in blood pressure (t = 6.386, p < 0.001).

Practical exercise

A small study is conducted involving 17 infants to investigate the association between gestational age at birth, measured in weeks, and birth weight, measured in grams.

Analyze the relationship between age at birth (the independent variable) and birth weight (the dependent variable) using **simple linear regression**

Infant ID #	Gestational Age (weeks)	Birth Weight (grams)
1	34.7	1895
2	36.0	2030
3	29.3	1440
4	40.1	2835
5	35.7	3090
6	42.4	3827
7	40.3	3260
8	37.3	2690
9	40.9	3285
10	38.3	2920
11	38.5	3430
12	41.4	3657
13	39.7	3685
14	39.7	3345
15	41.1	3260
16	38.0	2680
17	38.7	2005

