T-test for independent samples

T-test for independent samples

Elias Zintzaras, M.Sc., Ph.D.

Professor in Biomathematics-Biometry Department of Biomathematics School of Medicine University of Thessaly

Institute for Clinical Research and Health Policy Studies Tufts University School of Medicine Boston, MA, USA Theodoros Mprotsis, MSc, PhD Teacher & Research Fellow (http://biomath.med.uth.gr) University of Thessaly Email: tmprotsis@uth.gr

Effect of gender on aggression

Effect of gender on aggression

Males (N=12)	Females (N=13)
12	12
18	9
12	12
10	8
10	10
14	8
14	7
18	13
12	16
8	11
14	15
14	13
	9

Null hypothesis (H_0): Males will not show higher levels of aggression than females. Alternatively, the levels of aggression are not different between males and females.

Entering data and defining variables

	💰 sex	🛷 aggressiveness
1	1	12
2	1	18
3	1	12
4	1	10
5	1	10
6	1	14
7	1	14
8	1	18
9	1	12
10	1	8
11	1	14
12	1	14
13	2	12
14	2	9
15	2	12
16	2	8

Name

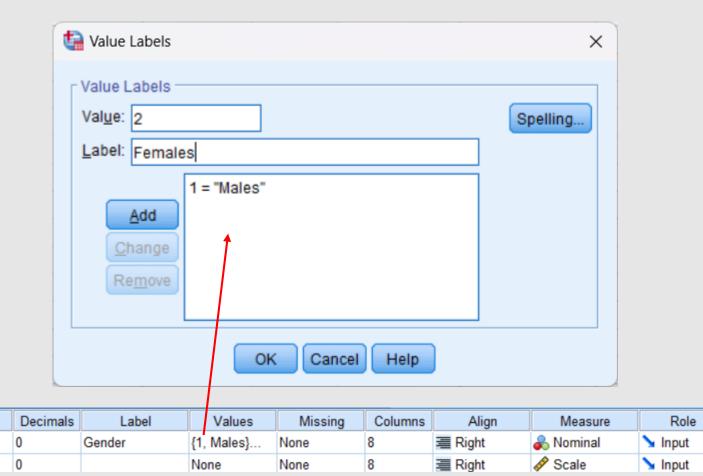
aggressiveness

sex

1

2

Width

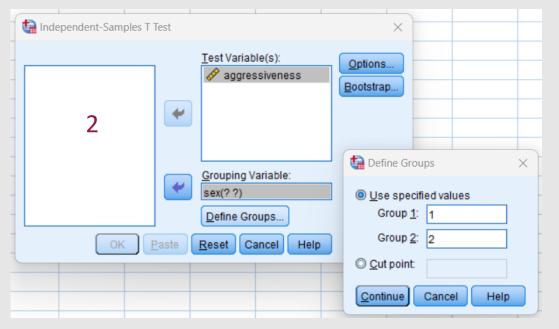

8

8

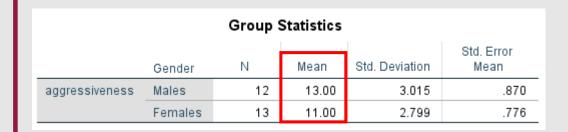
Type

Numeric

Numeric



Running the Independent Samples T Test


<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	Util	lities	Add- <u>o</u>	ns <u>N</u>	/indow	<u>H</u> elp
Repo	rts	•		×			5	
D <u>e</u> sci	iptive Statistics	•						
Ta <u>b</u> le	s	•						
Co <u>m</u> p	oare Means	•	М	Means	s			
<u>G</u> ene	ral Linear Model	•	t	One- <u>S</u>	ample 1	r Test		
Gene	rali <u>z</u> ed Linear Mode	ls 🕨	1 AB	Indepe	enden <u>t</u> -S	Sample	s T Test	t
Mi <u>x</u> ed	Models	•	a a.	Paired	I-Sampl	es T Te	st	
<u>C</u> orre	late	•		_	Vay ANO			
<u>R</u> egre	ession	•						
L <u>o</u> glir	iear	•						
Class	i <u>f</u> y	•	<u> </u>					
<u>D</u> ime	nsion Reduction	•						
Sc <u>a</u> le		•						
Nonp	arametric Tests	•	<u> </u>					
Forec	as <u>t</u> ing	•						
<u>S</u> urviv	al	•						
M <u>u</u> ltip	le Response	•						
🖶 Simul	ation							
<u>Q</u> ualit	y Control	•						
ROC	Cur <u>v</u> e							

1. To analyze the data, select **Analyze** from the menu, then choose **Compare Means** and **Independent-Samples T Test...**

 In window (2) drag the variable aggressiveness from the left panel to the Test Variable(s) box, and the variable sex to the Grouping Variable: box. Press the Define Groups... button, define the two groups, and then press Continue and OK

Interpretation of the results

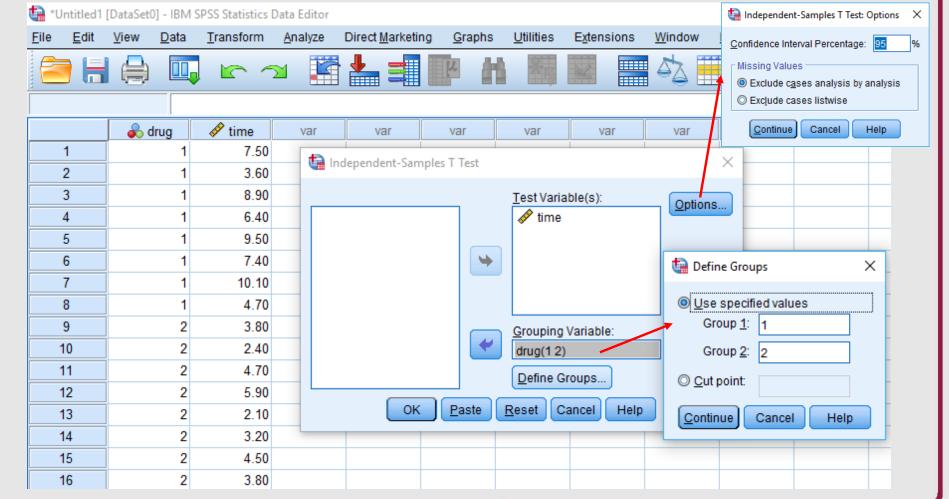
The variances between the two gender groups are equal, as the p-value of Levene's test is greater than 0.05 (p > 0.05). This result indicates that the variance in aggressiveness between males and females is not significantly different.

Since p > 0.05, we cannot reject the null hypothesis, and conclude that males do not show higher levels of aggressiveness then females (t(23) = 1.720, p = 0.099). Alternatively, the difference in aggressiveness between males and females is not statistically significant.

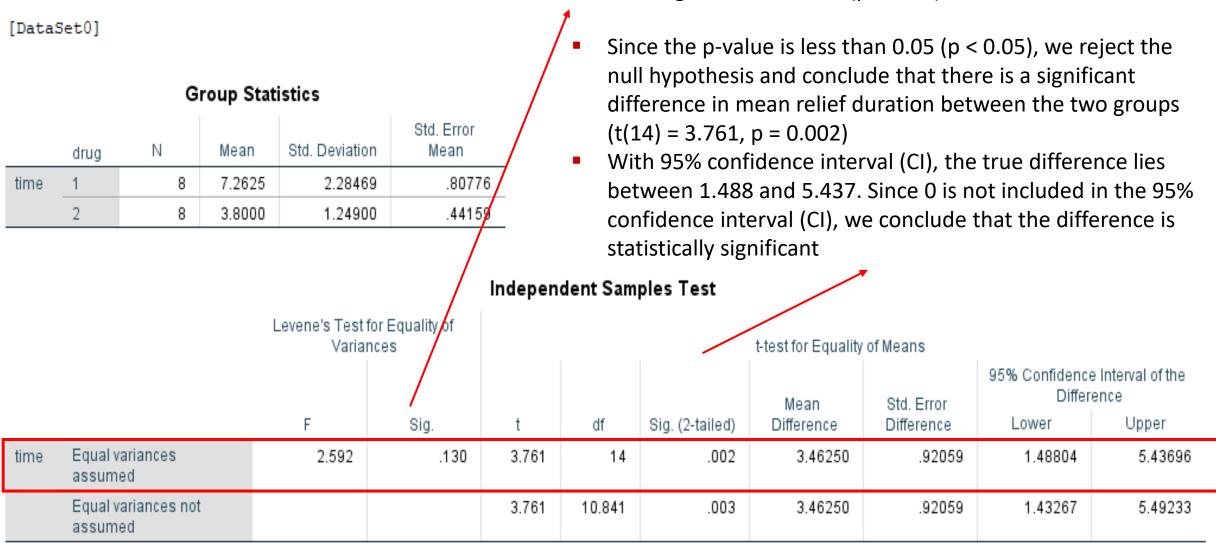
			Indepe	ndent Sa	mples Te	st				
		Levene's Test f Variar					t-test for Equality	of Means		
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Differ Lower	
aggressiveness	Equal variances assumed	.002	.969	1.720	23	.099	2.000	1.163	405	4.405
	Equal variances not assumed			1.715	22.443	.100	2.000	1.166	416	4.416

Duration of relief between two analgesic drugs

Duration of relief between two analgesic drugs

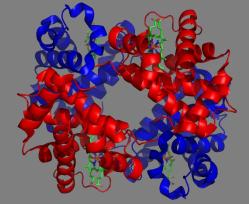

Drug (N=16)	Time (N=16)
1	7.50
1	3.60
1	8.90
1	6.40
1	9.50
1	7.40
1	10.10
1	4.70
2	3.80
2	2.40
2	4.70
2	5.90
2	2.10
2	3.20
2	4.50
2	3.80

- Suppose we want to test whether there is a difference in relief times between two analgesic drugs (Drug 1 and Drug 2)
- To compare analgesic drugs 1 and 2, 16 patients were randomly assigned to two groups, each receiving a different drug
- First, in the Variable View, name the two variables (drug and time). Then, enter the drug types and the relief times observed for each patient.


Null hypothesis (H_0) : There is no difference in the duration of relief between the two analgesic drugs

Data entry and running of the Independent Samples T Test

- To determine if there is a difference between the two drugs, we will apply the independent t-test and assess the significance level (p-value)
- Suppose we want to calculate the 95%
 confidence interval (CI) for the mean difference between the two drugs
- From the menu choose
 Analyze-> Compare
 Means-> Independent
 Samples T-test



T-Test

The variances between the two groups are equal, as the p-value of Levene's test is greater than 0.05 (p > 0.05)

Hemoglobin change after administration of two EPO drugs

Hemoglobin change after administration of two EPO drugs

Test	Reference
0.38	0.80
0.37	0.70
0.24	0.39
0.08	0.06
0.04	0.49
0.03	0.07
0.07	0.63
0.19	0.83
0.35	0.62
0.38	0.95
0.27	0.92
0.20	0.81

Suppose we want to compare the hemoglobin change after administration of two erythropoietin (EPO) drugs, Test (T) and Reference (R). 12 patients received the Test and 12 the Reference drug.

Null hypothesis (H₀): There is no difference in the mean hemoglobin change between the Test and Reference drug.

Note that these two measures are independent of each other.

Entering data and defining variables

ta *U	Intitled1	[DataSet0)] - IBM (SPSS Statistics
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>D</u> ata	<u>T</u> ransform
6				
		🖉 💑 d	lrug	🛷 hgb
	1		1	.38
	2		1	.37
	3		1	.24
	4		1	.08
	5		1	.04
	6		1	.03
	7		1	.07
	8		1	.19
	9		1	.35
L	10		1	.38
L	11		1	.27
L	12		1	.20
L	13		2	.80
L	14		2	.70
<u> </u>	15		2	.39
	16		2	.06
Data	a Viev	v		

We enter the data in the **Data View** and define the variables in the **Variable View** as shown in the images

- ta	*Untitled1	[DataSet(0] - IBM 9	SPSS Statisti	cs Data	Editor									
<u>E</u> ile	e <u>E</u> dit	<u>V</u> iew	<u>D</u> ata	Transforr	m <u>A</u> r	nalyze	Direct <u>M</u> arketii	ng <u>G</u> raphs	<u>U</u> tilities	E <u>x</u> tens	sions <u>W</u> indo	w <u>H</u> elp			
6	i 1		Ū.		2			1						ABC	
		Na	me	Туре		Width	Decimals	Label	V	alues	Missing	Columns	Align	Measure	Role
	1	drug		Numeric	8		0		{1, Te	st}	None	8	I Right	뤚 Nominal	🔪 Input
	2	hgb		Numeric	8		2		None		None	8	端 Right	🔗 Scale	🔪 Input
Va	iriable V	iew					Value Lat Value Lat Value:	d 1 = "Test" 2 = "Refer	rence"	Cancel	Help	Spelling	×		

Descriptive statistics

First we display descriptive statistics using the menu **Analyze -> Descriptive -> Statistics -> Explore**. In window (2) drag the variable **hgb** from the left panel to the **Dependent List** box, and the variable **drug** to the Factor List box.

Regorts Descriptive Statistics Tables Tables Compare Means General Linear Models Generalized Linear Models Mixed Models Qorrelate P R Rito Patter Patter <th><u>Analyze</u> Direct <u>M</u>arketing <u>G</u>raphs <u>U</u>tilities E<u>x</u>tensions <u>W</u></th> <th>ta Explore ×</th> <th>ta Explore: Plots</th> <th>×</th>	<u>Analyze</u> Direct <u>M</u> arketing <u>G</u> raphs <u>U</u> tilities E <u>x</u> tensions <u>W</u>	ta Explore ×	ta Explore: Plots	×
Regression Image: Comparison Image: Comparison Image: Comparison Image: Comparison Loglinear Image: Comparison Image: Comparison Image: Comparison Image: Comparison	Reports Image: Compare Means Compare Means Image: Compare Means General Linear Model Image: Constabs Generalized Linear Models Image: Constabs Mixed Models Image: Ratio Correlate Image: Ratio Regression Image: Ratio Regression Image: Ratio	2 Dependent List: Statistics Plots Plots Options Label Cases by:	Boxplots ● <u>F</u> actor levels together ○ <u>D</u> ependents together ○ <u>N</u> one ▼ Normality plots with tests Spread vs Level with Leven ◎ None ◎ Power estimation	Descriptive Stem-and-leat ↓istogram 3 e Test

In window (3), select **Histogram** and **Normality plots with tests**. Then press **Continue** and **OK**.

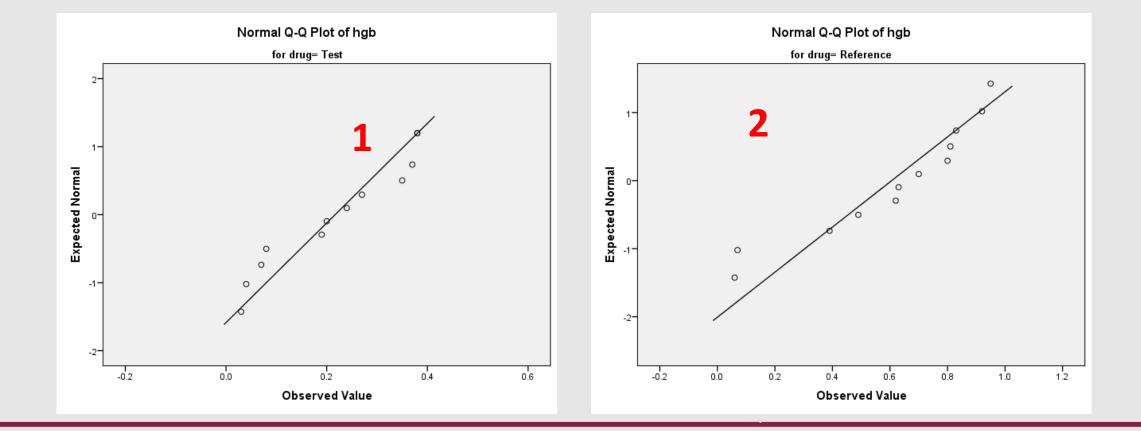
	Case Processing Summary							
	Cases							
	Valid Missing Total							
	drug	Ν	Percent	Ν	Percent	Ν	Percent	
hgb	Test	12	100.0%	0	0.0%	12	100.0%	
	Reference	12	100.0%	0	0.0%	12	100.0%	

Tests of Normality

		Kolm	ogorov-Smir	nov ^a	5	Shapiro-Wilk	
	drug	Statistic	df	Sig.	Statistic	df	Sig.
hgb	Test	.175	12	.200	.886	12	.106
	Reference	.185	12	.200	.887	12	.109

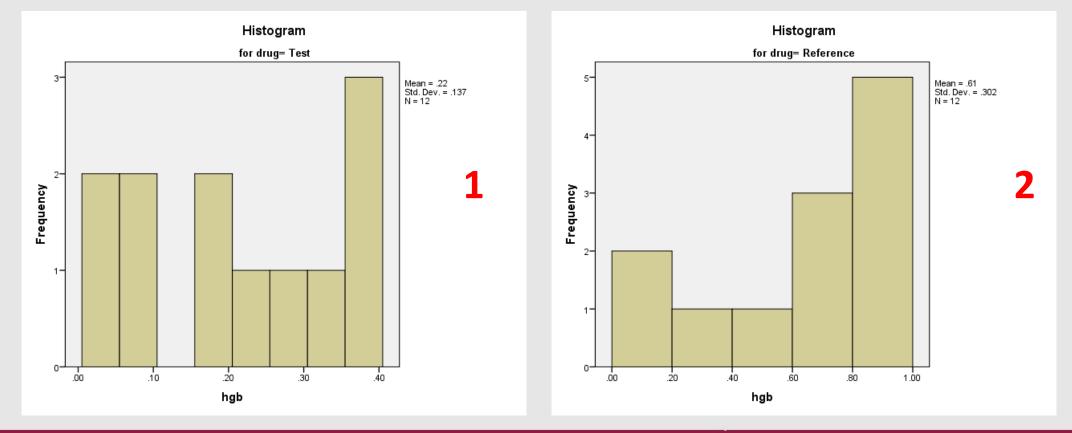
*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction


Based on the **Shapiro – Wilk** test (n < 50), we conclude that the hemoglobin values for both the test and reference drugs follow a normal distribution, as the p-value (Sig.) is greater than 0.05.

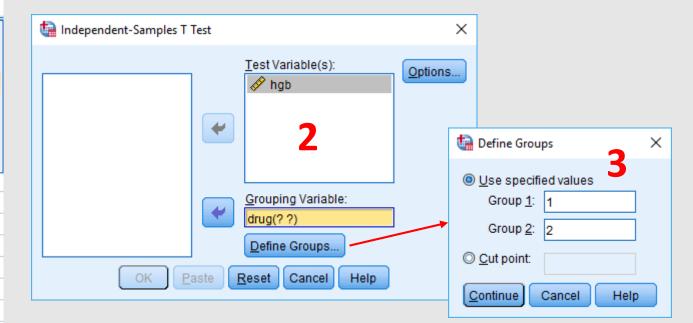
Note: The test of normality Kolmogorov-Smirnov is used when the number of patients exceeds 50.

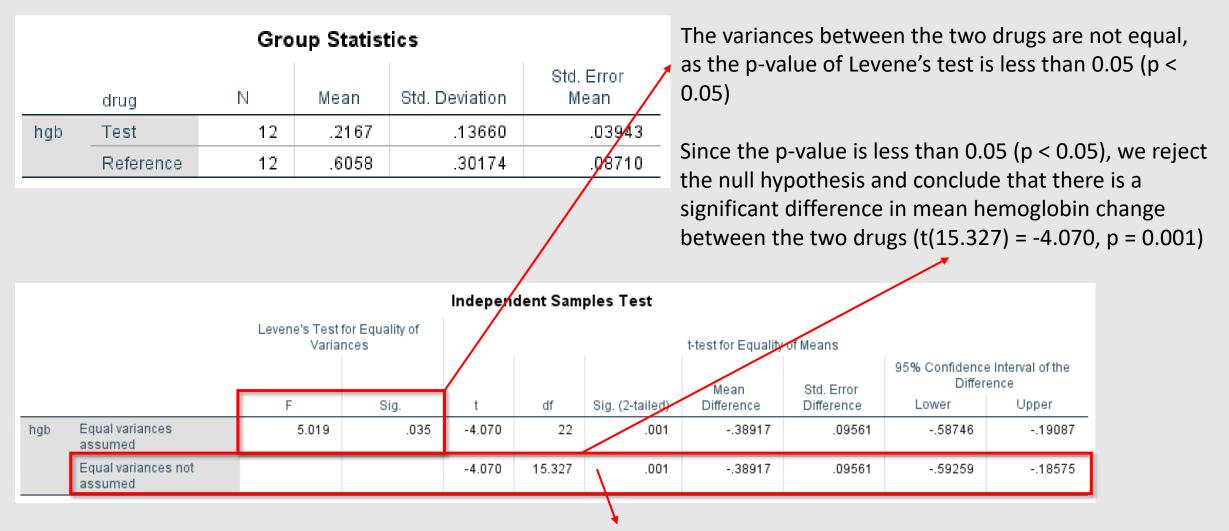
		Descriptiv	/es		
	drug			Statistic	Std. Error
hgb	Test	Mean		.2167	.03943
		95% Confidence Interval	Lower Bound	.1299	
		for Mean	Upper Bound	.3035	
		5% Trimmed Mean		.2180	
		Median		.2200	
		Variance		.019	
		Std. Deviation		.13660	
		Minimum		.03	
		Maximum	.38		
		Range		.35	
		Interquartile Range		.29	
		Skewness		124	.637
		Kurtosis		-1.634	1.232
	Reference	Mean		.6058	.08710
		95% Confidence Interval	Lower Bound	.4141	
		for Mean	Upper Bound	.7975	
		5% Trimmed Mean		.6170	
		Median		.6650	
		Variance		.091	
		Std. Deviation		.30174	
		Minimum		.06	
		Maximum		.95	
		Range		.89	
		Interquartile Range		.41	
		Skewness		907	.637
		Kurtosis		173	1.232


Test of normality using Q-Q Plots

Figures 1 and 2 show the **Q-Q plots** of the patients' hemoglobin values for the Test and Reference drugs. These plots indicate that the hemoglobin values **approximate a normal distribution well**

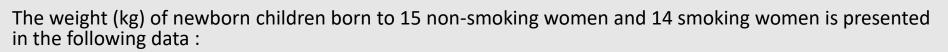
Test of normality using histograms


Figures 1 and 2 show the **Histograms** of the patients' hemoglobin values for the Test and Reference drugs. These plots indicate that the hemoglobin values **do not approximate a normal distribution well** (note that histograms can sometimes be misleading)


Running the Independent Samples T Test

Analyze Direct Marketing	<u>G</u> raphs	<u>U</u> til	lities	E <u>x</u> tens	ions	<u>W</u> indow	<u>H</u> e	lp
Re <u>p</u> orts D <u>e</u> scriptive Statistics		۲ ۲		1				
Ta <u>b</u> les		•						
Co <u>m</u> pare Means		۲.	<u>M</u> <u>M</u> e	ans				
<u>G</u> eneral Linear Model		۶.	1 Or	ne- <u>S</u> amj	ple T T	est		
Generalized Linear Models		۲.	🔝 Inc	depende	en <u>t</u> -Sar	nples T Te	est	
Mi <u>x</u> ed Models		•	+ Su	immary	Indepe	endent-Sa	mples	T Test
<u>C</u> orrelate		<u>}</u>	<mark></mark> <u>P</u> a	ired-Sa	mples	T Test		
<u>R</u> egression L <u>og</u> linear		r	<u>[</u>] Or	ne-Way/				
Classify		r •						
Dimension Reduction		, •						
Sc <u>a</u> le		•						
<u>N</u> onparametric Tests		•						
Forecasting		۶.		-1				
<u>S</u> urvival		۶.			•			
M <u>u</u> ltiple Response		۶.						
🖶 Simulation								
Quality Control		۶.						
ROC Cur <u>v</u> e								
Spatial and Temporal Mode	eling	•						

1. To analyze the data, select **Analyze** from the menu, then choose **Compare Means** and **Independent-Samples T Test...(**1)



2. In window (2) drag the variable hgb from the left panel to the Test Variable(s) box, and the variable drug to the Grouping Variable: box. Press the Define Groups... button, define the two groups, and then press Continue and OK

- There is a difference in hemoglobin change of -0.389 between the test and reference drugs. This difference is statistically significant, as the p-value is less than 0.05 (p < 0.05)
- With 95% confidence interval (CI), the true difference lies between -0.593 and -0.186. Since 0 is not included in the 95% confidence interval (CI), we conclude that the difference is statistically significant

Practical exercise

Sample 1	Sample 2				
Non-smokers	Smokers				
3.99	3.18				
3.79	2.84				
3.60	2.90				
3.73	3.27				
3.21	3.85				
3.60	3.52				
4.08	3.23				
3.61	2.76				
3.83	3.60				
3.31	3.75				
4.13	3.59				
4.13 3.26 3.54 3.51 2.71	3.63 2.38 2.34				

Is there a difference in the weight of newborn children between the two groups?