

Two-Way ANOVA without replication

Elias Zintzaras, M.Sc., Ph.D.

Professor in Biomathematics-Biometry Department of Biomathematics School of Medicine University of Thessaly

Institute for Clinical Research and Health Policy Studies Tufts University School of Medicine Boston, MA, USA Theodoros Mprotsis, MSc, PhD Teacher & Research Fellow (http://biomath.med.uth.gr) University of Thessaly Email: tmprotsis@uth.gr

- When there are two known factors affecting the variability (or variation) in the data
- Then, the effect of each factor is analyzed using a two-way analysis of variance (two-way ANOVA)
- This analysis is typically performed using statistical software such as SPSS or Excel

In an experiment to compare the effect of three **drugs** on lymphocyte counts in mice, a design with three mice from four different **cages** was used

Factors of variation

There are two possible factors of variation: the cage and the drug

	(colı	umns/tr	Cages eatme	ents/groups)		
Drugs	1	2	3	4	Mean	
а	7.1	6.1	6.9	5.6	$\bar{x}_a = 6.43$	Image: mail to a state of the
b	6.7	5.0	5.9	5.1	$\bar{x}_{b} = 5.68$	
С	6.6	5.4	5.8	5.2	$\bar{x}_{c} = 5.75$	Image: state sta

Overall mean:

The mean of all 12 lymphocyte counts together

 $\bar{\bar{x}} = 5.95$

A quick look at the columns tells us what?

Quick note: two-way ANOVA with replication

		ph	
sa	6.0	5.5	5.0
0	8.2	5.9	4.3
	8.4	6.0	4.3
	8.3	6.1	4.2
100	7.6	5.0	4.1
	7.8	5.3	4.4
	7.6	5.8	4.2

multiple measurements per cell

		Cag	jes		
Drugs	1	2	3	4	Mean
а	7.1	6.1	6.9	5.6	$\bar{x}_{a} = 6.43$
b	6.7	5.0	5.9	5.1	$\bar{x}_{b} = 5.68$
С	6.6	5.4	5.8	5.2	$\bar{x}_{c} = 5.75$
	$\bar{x}_1 = 6.80$	$\bar{x}_2 = 5.50$	$\bar{x}_3 = 6.20$	$\bar{x}_4 = 5.30$	$\bar{x} = 5.95$

Drug variation

Cages variation

Splitting sum of squares

Splitting sum of squares **Two-Way ANOVA** SST sum of squares total SSC Sum of squares from (column / between / treatment) anything not SSC sum of squares SSB SSE In then end, SSC will be block sum of squares (within / error) sum of compared to SSE. So, the smaller SSE is, SSC can squares claim a larger part of SST.

SST calculation

	А	В	С	D	E	F
1			Cages (ĸ	λουβιά)		
2	Drugs	1	2	3	4	
3	а	7.1	6.1	6.9	5.6	6.425
4	b	6.7	5	5.9	5.1	5.675
5	С	6.6	5.4	5.8	5.2	5.75
6		6.8	5.5	6.2	5.3	5.95

=VAR.S(B3:E5)*(COUNT(B3:E5)-1)

SST (total/overall) sum of squares

- Find difference between each data point and the overall mean
- 2. Square the difference
- 3. Add them up

$$\overline{\overline{x}} = 5.95$$

SSC calculation

	А	В	С	D	E	F				
1			Cages (κλουβιά)							
2	Drugs	1	2	3	4					
3	а	7.1	6.1	6.9	5.6	6.425				
4	b	6.7	5	5.9	5.1	5.675				
5	с	6.6	5.4	5.8	5.2	5.75				
6		6.8	5.5	6.2	5.3	5.95				

SSC (column/between) sum of squares

- Find difference between each drug mean and the overall mean
- 2. Square the deviations
- 3. Add them up
- 4. Multiply by the number of cages

 $\overline{\overline{x}} = 5.95$

SSB calculation

	A	В	с	D	E	F
1			Cages (ĸ	λουβιά)		
2	Drugs	1	2	3	4	
3	а	7.1	6.1	6.9	5.6	6.425
4	b	6.7	5	5.9	5.1	5.675
5	С	6.6	5.4	5.8	5.2	5.75
6		6.8	5.5	6.2	5.3	5.95
7		=AVERAGE(B3:B5)	=AVERAGE(C3:C5)	=AVERAGE(D3:D5)	=AVERAGE(E3:E5)	
8						
9		0.850	-0.450	0.250	-0.650	
10		=B6-\$F6	=C6-\$F6	=D6-\$F6	=D6-\$F6	
11						
12		0.722	0.203	0.063	0.423	
13		=POWER(B9,2)	=POWER(C9,2)	=POWER(D9,2)	=POWER(E9,2)	
14						
15		4.230				
16		=SUM(B12:E12)*3				

SSB block sum of squares

- Find difference between each cage mean and the overall mean
- 2. Square the deviations
- 3. Add them up
- 4. Multiply by the number of drugs

$$\overline{\overline{x}} = 5.95$$

SSE calculation

Two-way ANOVA is presented in the form of the following table:

Source of variation Between cages Between drugs Error Total	df (degrees of freedom)	SS (Sum of squares)		
Between cages Between drugs Error	4-1=3 3-1=2 11-3-2=6	4.23 1.365 0.275		
Total	12-1=11 (N-1)	5.87		

N = number of observations

Tests of Between-Subjects Effects

Dependent Variable: cells							
Source	Type III Sum of Squares	df	Mean Square	F	Sig.		
Corrected Model	5.595 ^a	5	1.119	24.415	.001		
Intercept	424.830	1	424.830	9269.018	.000		
drugs	1.365	2	.683	14.891	.005		
cages	4.230	3	1.410	30.764	.000		
Error	.275	6	.046				
Total	430.700	12					
Corrected Total	5.870	11					

a. R Squared = .953 (Adjusted R Squared = .914)

We are interested in the relationship between column variance (drug variance) and error variance

Since this a ratio of two variances, it will be an F-ratio and follow the F-distribution

We are interested in the relationship between column variance (drug variance) and error variance

Two-way ANOVA is presented in the form of the following table:

Source of variation	df (degrees of freedom)	SS (Sum of squares)	MS=SS (Mean Sq	/df uares)	F=MS	/Erro	or MS		
Between cages Between drugs Error	4-1=3 3-1=2 11-3-2=6	4.23 1.365 0.275	1.41 0.683 0.046		14.89				
Total	12-1=11 (N-1)	1.83		Dependent Variab Source	Tests of Be e: cells Type III Sum of Squares	tween-Su	ubjects Effect	F	Sig.
N = number of observa	tions			Corrected Model Intercept drugs cages	5.595° 424.830 1.365 4.230	5 1 2 3	1.119 424.830 .683 1.410	24.415 9269.018 14.891 30.764	.001 .000 .005 .000

a. R Squared = .953 (Adjusted R Squared = .914)

Error

Total

Corrected Total

.275

430.700

5.870

6

12

11

.046

F-Test

• We test if the drugs differ from each other by comparing the F-value $F = \frac{MS_{Between drugs}}{MS_{error}} = 14.89$ with the 5% point of

the F-distribution with 2 and 6 degrees of freedom (Between drugs df and Error df)

 Because the F-value of 14.89 is greater than the critical value of the F-distribution, which is 5.14 (see the F-distribution table at the end), there is a significant difference between the drugs with a probability of error P<0.05

Tests of Between-Subjects Effects

Dependent Variab	e: cells				
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	5.595 ^a	5	1.119	24.415	.001
Intercept	424.830	1	424.830	9269.018	.000
drugs	1.365	2	.683	14.891	.005
cages	4.230	3	1.410	30.764	.000
Error	.275	6	.046		
Total	430.700	12			
Corrected Total	5.870	11			
a R Squared =	953 (Adjusted R 3	Squared = 9	14)		

Finding the 5% point of the F-distribution with 2 and 6 degrees of freedom in Excel

Excel Data Analysis

File -> Options -> Add Ins -> Go ... -> Analysis ToolPak

Data -> Data Analysis

Data Analysis		?	×
<u>A</u> nalysis Tools			ък.
Anova: Single Factor Anova: Two-Factor With Replication	^		ncol
Anova: Two-Factor Without Replication		Ca	ncei
Correlation		<u>H</u>	elp
Descriptive Statistics Exponential Smoothing			
F-Test Two-Sample for Variances			
Fourier Analysis Histogram	~		

Excel Data Analysis

Data -> Data Analysis

	А	В	С	D	E	F	G	н	I			
1			Cages (к	λουβιά)								
2	Drugs	1	2	3	4	Anova: Two	Factor Without Repl	ication	? ×			
3	а	7.1	6.1	6.9	5.6	Input Input Rang	e: Si	A\$2:\$E\$5	ОК			
4	b	6.7	5	5.9	5.1	<mark>⊡ L</mark> abels	☐ Labels					
5	с	6.6	5.4	5.8	5.2	<u>A</u> lpha: 0.	05		<u>H</u> elp			
6						Output opt	ions Range: \$/	A\$7 📧				
7						O New W	orksheet <u>P</u> ly:					
8						O New We	orkbook					
9												

SPSS vs EXCEL

Source of variation	df (Degrees of freedom)	SS (Sum of squares)	MS=SS/df (Mean Squares)	F=MS/Error MS
Between cages Between drugs Error	4-1=3 3-1=2 11-3-2=6	4.23 1.365 0.275	1.41 0.683 0.046	14.89
Total	12-1=11	1.83		

Tests of Between-Subjects Effects

Dependent Variable: cells									
Source	Type III Sum of Squares	df	Mean Square	F	Sig.				
Corrected Model	5.595 ^a	5	1.119	24.415	.001				
Intercept	424.830	1	424.830	9269.018	.000				
drugs	1.365	2	.683	14.891	.005				
cages	4.230	3	1.410	30.764	.000				
Error	.275	6	.046						
Total	430.700	12							
Corrected Total	5.870	11							

a. R Squared = .953 (Adjusted R Squared = .914)

20	ANOVA						
21	Source of Variation	SS	df	MS	F	P-value	F crit
22	Rows	1.365	2	0.6825	14.89090909	0.004714835	5.14325285
23	Columns	4.23	3	1.41	30.76363636	0.000486046	4.757062663
24	Error	0.275	6	0.045833333			
25							
26	Total	5.87	11				

two-way ANOVA with replication

Two-way ANOVA with replication

Elias Zintzaras, M.Sc., Ph.D.

Professor in Biomathematics-Biometry Department of Biomathematics School of Medicine University of Thessaly

Institute for Clinical Research and Health Policy Studies Tufts University School of Medicine Boston, MA, USA Theodoros Mprotsis, MSc, PhD Teacher & Research Fellow (http://biomath.med.uth.gr) University of Thessaly Email: tmprotsis@uth.gr

When to use it

- When the data is categorized by two factors
- When there are multiple observations for each combination of the two factors (replication)
- Then the effects of each factor (i.e., the differences between the levels of the factor) or the interaction between the factors can be analyzed using a two-way analysis of variance (ANOVA) with replication
- Note: It's only possible to measure the interaction effect between the two predictor variables in an ANOVA with replication

For each sa and pH combination, there were three observations

One week later, the number of surviving **salmonella** was measured (log(density/ml))

	ph							
sa	6.0 (1)	5.5 (2)	5.0 (3)					
0(1)	8.2	5.9	4.3					
	8.4	6.0	4.3					
	8.3	6.1	4.2					
100 (2)	7.6	5.0	4.1					
	7.8	5.3	4.4					
	7.6	5.8	4.2					

NOW we have a two factor or two-way ANOVA with replication

Effects of sorbic acid (sa) and water pH on salmonella survival

sa	6.0	5.5	5.0	Μέση τιμή
0	$\bar{x}_{6.0,0} = 8.3$	$\bar{x}_{5.5,0} = 6.0$	$\bar{x}_{5.0,0} = 4.27$	$\bar{x}_0 = 6.19$
100	$\bar{x}_{6.0,100} = 7.67$	$\bar{x}_{5.5,100} = 5.37$	$\bar{x}_{5.0,100} = 4.23$	$\bar{x}_{100} = 5.76$
	$\bar{x}_{6.0} = 7.99$	$\bar{x}_{5.5} = 5.69$	$\bar{x}_{6.0} = 4.25$	$\bar{x} = 5.98$

Each cell has its own mean and its own distribution

Effects of sorbic acid (sa) and water pH on salmonella survival

Estimated Marginal Means (SPSS)

- For the pH levels 5.5 and 6.0, we observe a higher number of surviving salmonella at the 0 level of sa
- However, at the pH 5.0 level, we observed no difference in the number of surviving salmonella between the two levels of sa

Do the two levels of sa consistently increase **salmonella** survival across all pH levels?

Estimated Marginal Means (SPSS)

The answer is: NO

This kind of situation is called an **interaction**

The presence of the **interaction** means that the difference (D) sa0-sa100 is not constant

In a **marginal means graph**, a general rule is to examine whether the lines converge or tend to converge, as this indicates a **statistically significant interaction**

Two-Way ANOVA with interaction

Two-way ANOVA is presented in the form of the following table:

Source of variation	df	SS	MS=SS/df	$F=MS/s^2$
pH Sa Interaction pH*sa Error (Residual)	w-1=2 s-1=1 (w-1)*(s-1)=2 17-2-1-2=12	42.46 0.86 0.34 0.43	21.23 0.86 0.17 s ² =0.036	590 23.89 4.72
Total n=18-1=17				

- We test if the pH levels differ by comparing the F-value $F = \frac{MS_{pH}}{MS_{Residual}} = 590$ with the 5% critical value of the F-distribution with 2 and 12 degrees of freedom (df for pH and residual, respectively), which is 3.89 (see F-distribution table at the end)
- Since the F-value of 590 is much greater than 3.89, there is a significant difference between the pH levels (P < 0.05)

Two-Way ANOVA with interaction

Source of variation	df	SS	MS=SS/df	$F=MS/s^2$
pH Sa Interaction pH*sa Error (Residual)	w-1=2 s-1=1 (w-1)*(s-1)=2 17-2-1-2=12	42.46 0.86 0.34 0.43	21.23 0.86 0.17 s ² =0.036	590 23.89 4.72
Total n=18-1=17				

We test if the sa levels differ by comparing the F-value $F = \frac{MS_{sa}}{MS_{Residual}} = 23.89$ with the 5% critical value of the F-distribution with 1 and 12 degrees of freedom (df for sa and residual, respectively), which is 4.75 (see F-distribution table at the end)

4.747225347

=F.INV.RT(0.05, 1, 12)

Since the F-value of 23.89 is much greater than 4.75, there is a significant difference between the pH levels (P < 0.05)

Two-Way ANOVA with interaction

We test if there is an interaction between pH and sa by comparing the F-value $F = \frac{MS_{Interaction pH*sa}}{MS_{Interaction pH*sa}} = \frac{MS_{Interaction pH}}{MS_{Interaction pH}}$ **MS**_{Residual} 4.72 with the 5% critical value of the F-distribution with 2 and 12 degrees of freedom (Interaction df and residual df, respectively), which is 3.89 (see F-distribution table at the end)

3.885293835

Since the F-value of 4.72 is greater than 3.89, there is a significant interaction between pH and sa (P <0.05)

- We can compare the means of two pH levels or two sa levels using a t-test, similar to how it is done in one-way ANOVA
- Additionally, we can compare the mean values of two pH levels for one level of sa, again using a ttest, as in one-way ANOVA

Data -> Data Analysis

Tests of Between-Subjects Effects

Dependent Variable: salmonel

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	43.769 ^a	5	8.754	235.179	.000
Intercept	642.014	1	642.014	17248.134	.000
sa	.845	1	.845	22.701	.000
ph	42.564	2	21.282	571.761	.000
sa*ph	.360	2	.180	4.836	.029
Error	.447	12	.037		
Total	686.230	18			
Corrected Total	44.216	17			

a. R Squared = .990 (Adjusted R Squared = .986)

32	ANOVA						
33	Source of Variation	SS	df	MS	F	P-value	F crit
34	Sample	0.845	1	0.845	22.70149	0.000460488	4.747225
35	Columns	42.56444444	2	21.28222222	571.7612	1.25435E-12	3.885294
36	Interaction	0.36	2	0.18	4.835821	0.028822828	3.885294
37	Within	0.446666667	12	0.037222222			
38							
39	Total	44.21611111	17				

F-Distribution

Degrees of freedom in	Degrees of freedom in numerator												
denominator	1	2	3	4	5	6	7	8	9	10	20	40	∞
1	161.40	199.50	215.70	224.60	230.20	234.00	236.80	238.90	240.50	241.90	248.00	251.10	254.30
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.45	19.47	19.50
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.66	8.59	8.50
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.80	5.72	5.60
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.56	4.46	4.40
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	3.87	3.77	3.70
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.44	3.34	3.20
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.15	3.04	2.90
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	2.94	2.83	2.70
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.77	2.66	2.50
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.65	2.53	2.40
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.54	2.43	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.46	2.34	2.20
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.39	2.27	2.10
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.33	2.20	2.10
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.28	2.15	2.00
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.23	2.10	2.00
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.19	2.06	1.90
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.16	2.03	1.90
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.12	1.99	1.80
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	1.93	1.79	1.60
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	1.84	1.69	1.50
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.66	1.50	1.30
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.57	1.39	1.00