
Meta-analysis of genetic association studies

(Zintzaras and Lau 2008 J Clin Epidemiol)



Genetic association studies (GAS) assess the 

association between disease status and genetic 

variants (gene polymorphisms) in a population.

Often for specific disease multiple GAS are 

conducted for the same variant. 

However, the study results are never completely 

homogenous and it is difficult to make inferences 

whether a variant is responsible for developing the 

disease. 

Then, meta-analysis can play a role. 



Example – MTHFR C677T and Breast Cancer

Eleven GAS were conducted to investigate the association 

between MTHFR C677T  (wt=C and mt=T) variant and 

susceptibility to breast cancer (BC). The results were as 

follows (the P-value of the chi-square test can be calculated 

using the URL http://www.quantpsy.org/chisq/chisq.htm):

Breast Cancer Helathy controls

MTHFR C677T

GAS

TT TC CC TT TC CC P-value

1 15 23 28 11 21 25 0.70

2 43 162 110 23 92 118 <0.01

3 25 85 80 12 87 94 0.05

4 94 242 178 65 215 215 <0.01

5 32 96 58 17 80 50 0.27

6 7 38 43 24 145 173 0.73

7 343 695 274 196 577 387 <0.01

8 43 140 135 74 196 140 0.01

9 27 141 166 50 259 242 0.14

10 8 91 134 13 104 181 0.66

11 351 786 362 155 509 440 <0.01

http://www.quantpsy.org/chisq/chisq.htm


The GAS derived diverse results: 

in 6 GAS, the association was significant (P<0.05) and 

in 5 GAS, the association was not significant (P≥0.05) 

Breast Cancer Helathy controls

MTHFR C677T

GAS

TT TC CC TT TC CC P-value

1 15 23 28 11 21 25 0.70

2 43 162 110 23 92 118 <0.01

3 25 85 80 12 87 94 0.05

4 94 242 178 65 215 215 <0.01

5 32 96 58 17 80 50 0.27

6 7 38 43 24 145 173 0.73

7 343 695 274 196 577 387 <0.01

8 43 140 135 74 196 140 0.01

9 27 141 166 50 259 242 0.14

10 8 91 134 13 104 181 0.66

11 351 786 362 155 509 440 <0.01



Thus, based on the current evidence it is hard to draw a 

safe conclusion regarding the association between 

MTHFR C677T variant and BC development and we 

need to provide an overall estimate that shows the 

magnitude of association. 

In this instance a meta-analysis can play a role.

Breast Cancer Helathy controls

MTHFR C677T

GAS

TT TC CC TT TC CC P-value

1 15 23 28 11 21 25 0.70

2 43 162 110 23 92 118 <0.01

3 25 85 80 12 87 94 0.05

4 94 242 178 65 215 215 <0.01

5 32 96 58 17 80 50 0.27

6 7 38 43 24 145 173 0.73

7 343 695 274 196 577 387 <0.01

8 43 140 135 74 196 140 0.01

9 27 141 166 50 259 242 0.14

10 8 91 134 13 104 181 0.66

11 351 786 362 155 509 440 <0.01



Meta-analysis is a technique that synthesizes the 

results of individual GAS

However, prior to synthesis of results from individual 

GAS, we must specify the genetic model and the 

metric (or measure) for expressing the magnitude of 

association for each GAS. 

The magnitude of association is expressed by the 

odds ratio (OR). 

What is a meta-analysis?



Meta-analysis allows us 

i) to estimate the overall (pooled) OR after 

combining multiple GAS, 

ii) to explore the sources of heterogeneity across 

studies and 

iii) to investigate the existence of publication bias. 

However, the synthesis of results is not just the 

simple sum of the data obtained from all GAS but it is 

a procedure that “weights” the results of each study 

according to its precision (which is expressed as 

variance).



In meta-analysis of GAS, we explore various genetic 

models of genotypes by merging genotypes. These 

models include: 

- recessive model:  

homozygous for mt (mt/mt) vs. wt-carriers 

- dominant model:  

mt-carriers vs. homozygous for wt (wt/wt)

- additive model:  

homozygous for mt vs. homozygous for wt

- co-dominant model: 

heterozygous (wt/mt) vs. all homozygotes 

Genetic models



Recessive model

For each study, we merge the genotypes (mt/mt vs. 

mt/wt+wt/wt) and then, we calculate the OR with the 

respective 95% CI. 

The data of the 1st GAS is as follows: 

MTHFR C677T Cases-BC Controls

TT (mt/mt) 15 11

TC (mt/wt) 23 21

CC (wt/wt) 28 25



After merging the genotypes (mt/mt vs. mt/wt+wt/wt) for 

expressing the recessive model the data of the 1st 

GAS is as follows: 

Outcome
Cases-BC

(T)

Control

(C)
Total

mt/mt sT = 15 sC = 11 s = 26

wt-carrier (mt/wt+wt/wt) fT = 51 (23+28) fC = 46 (21+25) f = 97

Total nT = 66 nC = 57 n = 123



Odds ratio, OR

The OR is given by the following formula: 
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The variance of θ=ln(OR) is:  
T C T C

1 1 1 1
var θ = + + +

s s f f

The standard error of θ is:    SE θ = var θ



Then, the 95% CI of θ=ln(OR) is 

 θ-1.96 * SE, θ+1.96 * SE

In order to estimate the 95% CI of the OR we calculate 

the anti-log, i.e. we calculate the exponentials of the 

upper and lower limits (note: eln(x)=x) 

   θ-1.96*SE θ+1.96*SE ln(OR)-1.96*SE ln(OR)+1.96*SEe , e e , e



Example- MTHFR C677T and Breast Cancer

Outcome
Cases-BC

(T)

Control

(C)
Total

mt/mt sT = 15 sC = 11 s = 26

wt-carrier (mt/wt+wt/wt) fT = 51 fC = 46 f = 97

Total nT = 66 nC = 57 n = 123

The OR of BC when homozygous mt/mt relative to wt-

carrier (mt/wt+wt/wt)  is given by: 

T

C

T

C

s

sBCwhenmt / mt

fBCwhen wt carrier

f

 
      
       

       
 
 

T C

C T

s f"prob."of 15× 46
OR = = = = 1.23

"prob."of s f 11×51

An OR=1.23 means that there is 23% more chance of 

BC when mt/mt than when wt-carrier. 



θ = ln(OR) = ln(1.23) = 0.21

 
T C T C

1 1 1 1 1 1 1 1
var θ = + + + = + + + = 0.20

s s f f 15 11 51 46

    SE = var = 0.20 = 0.45

    

   

θ -1.96 *SE θ , θ+1.96 *SE θ =

0.21-1.96 *0.45, 0.21+1.96 *0.45 = -0.67, 1.09

Then, the 95% CI of θ=ln(OR) is 

Outcome
Cases-BC

(T)

Control

(C)
Total

mt/mt sT = 15 sC = 11 s = 26

wt-carrier (mt/wt+wt/wt) fT = 51 fC = 46 f = 97

Total nT = 66 nC = 57 n = 123



Then, the 95% CI of OR is    -0.67 1.09e , e = 0.51, 2.95

Thus, with 95% confidence we can claim that the OR lies 

from 0.51 to 2.96.

The 95% CI of OR includes “1” and therefore, the OR is 

not significant at P=0.05. 

 -0.67, 1.09The 95% CI of θ=ln(OR) is 



Recessive model for all GAS

Then, the data of all studies are as follows: 

MTHFR C677T

GAS

Cases Controls RESULTS

mt/mt Total mt/mt Total OR 95%LL 95%UL

1 15 66 11 57 1.23 0.51 2.95

2 43 315 23 233 1.44 0.84 2.47

3 25 190 12 193 2.29 1.11 4.69

4 94 514 65 495 1.48 1.05 2.09

5 32 186 17 147 1.59 0.84 2.99

6 7 88 24 342 1.15 0.48 2.75

7 343 1312 196 1160 1.74 1.43 2.12

8 43 318 74 410 0.71 0.47 1.07

9 27 334 50 551 0.88 0.54 1.44

10 8 233 13 298 0.78 0.32 1.91

11 351 1499 155 1104 1.87 1.52 2.30



The GAS derived diverse results:

Ιn 8 GAS, the OR was >1, indicating that an homozygous 

mt/mt subject has greater chance of developing BC 

relative to a wt-carrier (mt/wt+wt/wt) subject

MTHFR C677T

GAS

Cases Controls RESULTS

mt/mt Total mt/mt Total OR 95%LL 95%UL

1 15 66 11 57 1.23 0.51 2.95

2 43 315 23 233 1.44 0.84 2.47

3 25 190 12 193 2.29 1.11 4.69

4 94 514 65 495 1.48 1.05 2.09

5 32 186 17 147 1.59 0.84 2.99

6 7 88 24 342 1.15 0.48 2.75

7 343 1312 196 1160 1.74 1.43 2.12

8 43 318 74 410 0.71 0.47 1.07

9 27 334 50 551 0.88 0.54 1.44

10 8 233 13 298 0.78 0.32 1.91

11 351 1499 155 1104 1.87 1.52 2.30



Ιn 3 GAS, the OR was <1, indicating that an homozygous 

mt/mt subject has less chance of developing BC relative 

to a wt-carrier (mt/wt+wt/wt) subject

MTHFR C677T

GAS

Cases Controls RESULTS

mt/mt Total mt/mt Total OR 95%LL 95%UL

1 15 66 11 57 1.23 0.51 2.95

2 43 315 23 233 1.44 0.84 2.47

3 25 190 12 193 2.29 1.11 4.69

4 94 514 65 495 1.48 1.05 2.09

5 32 186 17 147 1.59 0.84 2.99

6 7 88 24 342 1.15 0.48 2.75

7 343 1312 196 1160 1.74 1.43 2.12

8 43 318 74 410 0.71 0.47 1.07

9 27 334 50 551 0.88 0.54 1.44

10 8 233 13 298 0.78 0.32 1.91

11 351 1499 155 1104 1.87 1.52 2.30



In 4 GAS, the OR was significant and in 7 GAS, the OR 

was non-significant.

MTHFR C677T

GAS

Cases Controls RESULTS

mt/mt Total mt/mt Total OR 95%LL 95%UL

1 15 66 11 57 1.23 0.51 2.95

2 43 315 23 233 1.44 0.84 2.47

3 25 190 12 193 2.29 1.11 4.69

4 94 514 65 495 1.48 1.05 2.09

5 32 186 17 147 1.59 0.84 2.99

6 7 88 24 342 1.15 0.48 2.75

7 343 1312 196 1160 1.74 1.43 2.12

8 43 318 74 410 0.71 0.47 1.07

9 27 334 50 551 0.88 0.54 1.44

10 8 233 13 298 0.78 0.32 1.91

11 351 1499 155 1104 1.87 1.52 2.30



Enter the data of the 11 GAS in XL file META_OR_GAS (yellow color). 

Then, the OR and the respective 95% CI of each GAS is calculated. 

Note that this file contains all the results of the subsequent meta-

analysis. Also, data to be used in SPSS for analysis later are shown 

(blue and green color). 

Practice in XL 



Graphical presentation of data

In meta-analysis, the data are graphical displayed 

using a CI plot (forest plot).  

This plot provide information on the magnitude of the 

individual study estimates of treatment difference, an 

indication of the precision of these estimates and a 

means of assessing consistency amongst the studies. 

When an overall estimate has been calculated, this 

can be included.



Example - MTHFR C677T and Breast Cancer

Eleven GAS were conducted to investigate the 

association between MTHFR C677T variant and BC. 

The results were as follows:

MTHFR 

C677T

GAS

Cases Controls RESULTS

mt/mt Total mt/mt Total OR 95%LL 95%UL

1 15 66 11 57 1.23 0.51 2.95

2 43 315 23 233 1.44 0.84 2.47

3 25 190 12 193 2.29 1.11 4.69

4 94 514 65 495 1.48 1.05 2.09

5 32 186 17 147 1.59 0.84 2.99

6 7 88 24 342 1.15 0.48 2.75

7 343 1312 196 1160 1.74 1.43 2.12

8 43 318 74 410 0.71 0.47 1.07

9 27 334 50 551 0.88 0.54 1.44

10 8 233 13 298 0.78 0.32 1.91

11 351 1499 155 1104 1.87 1.52 2.30



In plotting the results, the y-axis depicts the GAS and the 

x-axis the ORs with the respective 95% CIs, the x-axis is 

always shown in logarithmic scale for making the visual 

presentation easy.
G
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S

study1

study2

study3
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study5
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study7

study8
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study11

OR (95% CI)

54321.9.8.7.6.5.4.3



Practice in SPSS 

Copy-paste the data from XL file META_OR_GAS to SPSS. 

Then, in SPSS, the graph is contracted as follows: 



Combination of estimates of a treatment difference 

across trials – pooled estimates

In combining the results from multiple GAS, the pooled 

estimate of OR can be estimated using two approaches: 

the fixed effects (FE) model and the random effects 

(RE) model. 

The FE model assumes that the GAS are homogeneous 

in terms of magnitude of association (ie the differences 

in OR across studies are due to chance). 

Then the pooled estimate of OR is given by the 

weighted average of the ORs of the GAS included in the 

meta-analysis. The weight is the precision of each GAS 

(i.e. the variance). 



The RE model assumes a genuine diversity in the ORs 

of various GAS, and it incorporates to the calculations 

a between study variance. 

Hence, when there is significant heterogeneity between 

GAS, the pooled estimate of the OR is calculating 

using the RE model. 



Ηeterogeneity

Heterogeneity is a consequence of different 

populations, sampling strategies and methodological 

(in genotypying, clinical setting, blindness of the 

laboratory personnel, etc) diversity across studies. 



Fixed effects model
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Lets consider the magnitude of association for GAS i, 

θi=ln(ORi). 

Then, the pooled estimate of treatment difference θp = 

ln(ORp) (ie the meta-analysis’ global outcome or 

pooled effect) is a weighted mean of θi’s: 

where n is the number of GAS involved in the meta-

analysis and wi is the weight for trial i. 
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var( ) v 

The weight of each trial i is given by the inverse of the 

variance of θi (i,e, an estimate of the precision): 

where vi the variance of θi for the GAS i, 



The standard error of θp = ln(ORp) is given by

1

1



 


p n

i

i

SE( )

w

The 95% CI for θp = ln(ORp) is given by

 1 96 1 96     
p p p p

. *SE( ), . *SE( )



In order to estimate the FE pooled ORp, we calculate 

the anti-log of θp = ln(ORp), 

i.e. we calculate the exponential of θp = ln(ORp) (note: 

eln(x)=x) 

  pln(OR )

p
OR epθ

e

The 95% CI of the FE ORp, is calculated by taking the 

anti-log of the limits of the CI, 

i.e. we calculate the exponentials of the upper and 

lower limits (note: eln(x)=x) 

    p p p pθ -1.96*SE θ θ +1.96*SE θ
e , e



Example - MTHFR C677T and Breast Cancer

MTHFR C677T

GAS

Cases Controls RESULTS

mt/mt Total mt/mt Total OR 95%LL 95%UL

1 15 66 11 57 1.23 0.51 2.95

2 43 315 23 233 1.44 0.84 2.47

3 25 190 12 193 2.29 1.11 4.69

4 94 514 65 495 1.48 1.05 2.09

5 32 186 17 147 1.59 0.84 2.99

6 7 88 24 342 1.15 0.48 2.75

7 343 1312 196 1160 1.74 1.43 2.12

8 43 318 74 410 0.71 0.47 1.07

9 27 334 50 551 0.88 0.54 1.44

10 8 233 13 298 0.78 0.32 1.91

11 351 1499 155 1104 1.87 1.52 2.30

Τhe pooled estimate of treatment difference θp = ln(ORp) is





8
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i=1 1 1 11 11

p 8

1 11
i

i=1

w θ
w θ +...+w θ 5.03×0.21+...+89.08×0.63

θ = = = = 0.43
w +...+w 5.03+...+89.08

w



Example - MTHFR C677T and Breast Cancer

MTHFR C677T

GAS

Cases Controls RESULTS

mt/mt Total mt/mt Total OR 95%LL 95%UL

1 15 66 11 57 1.23 0.51 2.95

2 43 315 23 233 1.44 0.84 2.47

3 25 190 12 193 2.29 1.11 4.69

4 94 514 65 495 1.48 1.05 2.09

5 32 186 17 147 1.59 0.84 2.99

6 7 88 24 342 1.15 0.48 2.75

7 343 1312 196 1160 1.74 1.43 2.12

8 43 318 74 410 0.71 0.47 1.07

9 27 334 50 551 0.88 0.54 1.44

10 8 233 13 298 0.78 0.32 1.91

11 351 1499 155 1104 1.87 1.52 2.30

Τhe pooled estimate of treatment difference θp = ln(ORp) is





8

i i
i=1 1 1 11 11

p 8

1 11
i

i=1

w θ
w θ +...+w θ 5.03×0.21+...+89.08×0.63

θ = = = = 0.43
w +...+w 5.03+...+89.08

w



Example - MTHFR C677T and Breast Cancer

MTHFR C677T

GAS

Cases Controls RESULTS

mt/mt Total mt/mt Total OR 95%LL 95%UL

1 15 66 11 57 1.23 0.51 2.95

2 43 315 23 233 1.44 0.84 2.47

3 25 190 12 193 2.29 1.11 4.69

4 94 514 65 495 1.48 1.05 2.09

5 32 186 17 147 1.59 0.84 2.99

6 7 88 24 342 1.15 0.48 2.75

7 343 1312 196 1160 1.74 1.43 2.12

8 43 318 74 410 0.71 0.47 1.07

9 27 334 50 551 0.88 0.54 1.44

10 8 233 13 298 0.78 0.32 1.91

11 351 1499 155 1104 1.87 1.52 2.30

The SE of θp = ln(ORp) is


p 11

1 11
i

i=1

1 1 1
se( θ )= = = = 0.057

w +...+ w 5.03+...+89.08
w



The 95% CI of θp = ln(ORp) is 

 

 

 

p p p pθ -1.96se(θ ), θ +1.96se(θ )=

= 0.429 -1.96×0.057, 0.429+1.96×0.057 =

= 0.32, 0.54



The FE pooled ORp is calculated by taking the anti-

log of θp = ln(ORp), i.e. we calculate the exponential 

of θp = ln(ORp) (note: eln(x)=x):

0 43 1 53pln(OR ) .

p
OR e e .   pθ

e

In order to estimate the 95% CI of the pooled OR, ORp, 

we calculate the anti-log of the limits, i.e. we calculate 

the exponentials of the upper and lower limits of the 

95% CI of θp = ln(ORp) (note: eln(x)=x): 

      

   

p p 




p p p p
θ -1.96*SE θ +1.96*SE ln(OR )-1.96*SE ln(OR )+1.96*SE

0.32 0.54

e , e e , e =

e , e = 1.37, 1.71

The 1 is not included in the 95% CI, thus the FE pooled 

ORp is significant. 



Practice in XL

In XL, the file META_OR _GAS produces the FE ORp and 

the respective 95% CI. 



Testing for heterogeneity

The FE does not consider the variability across 

studies and assumes that the studies are 

homogeneous in terms of θi. 

Thus, in order to use the FE model, we need first to 

test whether a significant heterogeneity across 

studies exists. 

If heterogeneity does not exist, then we are eligible 

to use the FE model; otherwise the RE model 

should be used. 



The test for heterogeneity is based on the following 

formula (Q-statistic):

 
2

1

n

i i p

i

Q w


  

The Q-statistic is a weighted sum of squares of the 

deviations of individual θi‘s, θi=ln(ORi), from the 

pooled estimate θp. 

When the θi’s are homogeneous, Q follows a χ2-

distribution with n−1 df. 

If Q is less than the 10% point of the χ2-distribution 

with n-1 df, there is no significant heterogeneity 

across studies. 



Example - MTHFR C677T and Breast Cancer

MTHFR C677T

GAS

Cases Controls RESULTS

mt/mt Total mt/mt Total θ

=ln(OR)

OR 95%LL 95%UL

1 15 66 11 57 0.21 1.23 0.51 2.95

2 43 315 23 233 0.36 1.44 0.84 2.47

3 25 190 12 193 0.83 2.29 1.11 4.69

4 94 514 65 495 0.39 1.48 1.05 2.09

5 32 186 17 147 0.46 1.59 0.84 2.99

6 7 88 24 342 0.14 1.15 0.48 2.75

7 343 1312 196 1160 0.55 1.74 1.43 2.12

8 43 318 74 410 -0.34 0.71 0.47 1.07

9 27 334 50 551 -0.13 0.88 0.54 1.44

10 8 233 13 298 -0.25 0.78 0.32 1.91

11 351 1499 155 1104 0.63 1.87 1.52 2.30

Τhe pooled estimate of treatment difference is θp = ln(ORp) = 0.43 

The heterogeneity Q-statistic is: 

     

   


11

2 2 2

i i p 1 1 p 11 11 p

i=1

2 2

Q = w θ - θ = w θ - θ +...+ w θ - θ =

5.03 0.21- 0.43 +...+89.08 0.63 - 0.43 = 27.87



The value Q=27.87 is greater than τhe 10% point of 

the χ2-distribution with n-1=11-1=10 df which is 

15.99 (see Table below). 

Thus, there is significant heterogeneity across 

studies (P<0.10). 

Since there is significant heterogeneity across studies 

the RE model for estimating the pooled OR should be 

used to draw inferences. 



Practice in XL

In XL, the file META_OR_GAS tests for heterogeneity. 

The exact P-value for Q is P=0.002.



Random effects model

When there is significant heterogeneity between 

studies, the pooled estimate of the treatment 

differences is calculating using the RE model since 

it incorporates to the calculations a between study 

variance. 



The RE pooled estimate of the treatment difference  (ie 

the meta-analysis’ global outcome or pooled effect) is 

again a weighted mean of θi’s: 
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where  is the weight of study i which is equal to the 

inverse of the variance (precision) of θi,

 i

*

i

1
w =

var θ

 
 
 

2

i

i

1
var( θ )= + τ

wand

where τ2 is the between studies variance (ie in the RE 

model, the variance of θi incorporates the variance of 

treatment differences across studies).



The τ2 is given by the (DerSimonian and Laird) 

formula: 

2

2

1 1 1

1
n n n

i i i

i i i

Q (n )

w w w
  

 
 

  

If τ2<0 then it is set τ2=0. 



The standard error of  θ*
p=ln(OR*

p) is given by

1

1
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w

The 95% CI for θ*
p=ln(OR*

p) is given by

    * * * *

p p p pθ -1.96*SE θ , θ +1.96*SE θ



In order to estimate the RE pooled , we calculate the 

anti-log of , i.e. we calculate the exponential of  (note: 

eln(x)=x) 

 
* *
p pln(OR )*

p
OR e

θ
e

The 95% CI of the RE OR*
p, is calculated by taking the 

anti-log of the limits of the CI for θ*
p=ln(OR*

p) , i.e. we 

calculate the exponentials of the upper and lower 

limits:

    
 
 

* * * *
p p p pθ -1.96*SE θ θ +1.96*SE θ

e , e



Example - MTHFR C677T and Breast Cancer

MTHFR C677T

GAS

Cases Controls RESULTS

mt/mt Total mt/mt Total θ

=ln(OR)

v w=1/v w*

1 15 66 11 57 0.21 0.199 5.03 3.66

2 43 315 23 233 0.36 0.075 13.30 6.67

3 25 190 12 193 0.83 0.135 7.41 4.77

4 94 514 65 495 0.39 0.031 32.54 9.49

5 32 186 17 147 0.46 0.104 9.59 5.59

6 7 88 24 342 0.14 0.200 5.00 3.64

7 343 1312 196 1160 0.55 0.010 99.14 11.80

8 43 318 74 410 -0.34 0.043 23.05 8.47

9 27 334 50 551 -0.13 0.062 16.05 7.30

10 8 233 13 298 -0.25 0.210 4.76 3.51

11 351 1499 155 1104 0.63 0.011 89.08 11.64

Q=27.87

  

2

11 11 11 2 2
2 1 11

i i i 1 11
i=1 i=1 i=1 1 11

2 2

Q-(n -1) Q -(n -1)
τ = = =

w +...+w
w - w w w +...+w -

w +...+w

27.87 -(11-1)
= 0.075

5.03 +...+89.08
5.03+...+89.08-

5.03+...+89.08



Example - MTHFR C677T and Breast Cancer

MTHFR C677T

GAS

Cases Controls RESULTS

mt/mt Total mt/mt Total θ

=ln(OR)

v w=1/v w*

1 15 66 11 57 0.21 0.199 5.03 3.66

2 43 315 23 233 0.36 0.075 13.30 6.67

3 25 190 12 193 0.83 0.135 7.41 4.77

4 94 514 65 495 0.39 0.031 32.54 9.49

5 32 186 17 147 0.46 0.104 9.59 5.59

6 7 88 24 342 0.14 0.200 5.00 3.64

7 343 1312 196 1160 0.55 0.010 99.14 11.80

8 43 318 74 410 -0.34 0.043 23.05 8.47

9 27 334 50 551 -0.13 0.062 16.05 7.30

10 8 233 13 298 -0.25 0.210 4.76 3.51

11 351 1499 155 1104 0.63 0.011 89.08 11.64

The weight of study 1 

incorporating the across 

study variability is:

   
  
  

*

1

2

1

1 1
w = = = 3.66

11
+0.075+ τ

5.03w

For study 11 the 

weight is:    
  
  

*

11

2

11

1 1
w = = =11.64

11
+0.075+ τ

89.08w



Example - MTHFR C677T and Breast Cancer

MTHFR C677T

GAS

Cases Controls RESULTS

mt/mt Total mt/mt Total θ

=ln(OR)

v w=1/v w*

1 15 66 11 57 0.21 0.199 5.03 3.66

2 43 315 23 233 0.36 0.075 13.30 6.67

3 25 190 12 193 0.83 0.135 7.41 4.77

4 94 514 65 495 0.39 0.031 32.54 9.49

5 32 186 17 147 0.46 0.104 9.59 5.59

6 7 88 24 342 0.14 0.200 5.00 3.64

7 343 1312 196 1160 0.55 0.010 99.14 11.80

8 43 318 74 410 -0.34 0.043 23.05 8.47

9 27 334 50 551 -0.13 0.062 16.05 7.30

10 8 233 13 298 -0.25 0.210 4.76 3.51

11 351 1499 155 1104 0.63 0.011 89.08 11.64

The RE pooled estimate of the treatment difference θp* is: 





11
*

* *i i
* i=1 1 1 11 11
p 11 * *

* 1 11
i

i=1

w θ
w θ +...+w θ 3.66(0.21)+...+11.64(0.63)

θ = = = = 0.302
w +...+w 3.66+...+11.64

w



Example - MTHFR C677T and Breast Cancer

MTHFR C677T

GAS

Cases Controls RESULTS

mt/mt Total mt/mt Total θ

=ln(OR)

v w=1/v w*

1 15 66 11 57 0.21 0.199 5.03 3.66

2 43 315 23 233 0.36 0.075 13.30 6.67

3 25 190 12 193 0.83 0.135 7.41 4.77

4 94 514 65 495 0.39 0.031 32.54 9.49

5 32 186 17 147 0.46 0.104 9.59 5.59

6 7 88 24 342 0.14 0.200 5.00 3.64

7 343 1312 196 1160 0.55 0.010 99.14 11.80

8 43 318 74 410 -0.34 0.043 23.05 8.47

9 27 334 50 551 -0.13 0.062 16.05 7.30

10 8 233 13 298 -0.25 0.210 4.76 3.51

11 351 1499 155 1104 0.63 0.011 89.08 11.64



*

p 11 * *
* 1 11
i

i=1

1 1 1
se( θ )= = = = 0.114

w +...+w 3.66+...+11.64
w



The 95% CI of θ*
p=ln(OR*

p) is: 

 

 

 





* * * *

p p p pθ -1.96se(θ ), θ +1.96se(θ )=

0.302 -1.96×0.114, 0.302+1.96×0.114 =

0.079, 0.525



The RE pooled  is calculated by taking the anti-log of , i.e. 

we calculate the exponential of  (note: eln(x)=x):

0 302 1 352
* *
p pln(OR )* .

p
OR e e .   

θ
e

In order to estimate the 95% CI of  we calculate the anti-

log, i.e. we calculate the exponentials of the upper and 

lower limits:

     
* *
p pθ -1.96*SE θ +1.96*SE 0.079 0.525e , e = e , e = 1.082, 1.691

The 1 is included in the 95% CI, thus the RE pooled ORp 

is not significant!

The 95% CI for RE ORp is always wider than the 95% CI 

for FE OR. 



Practice in XL

In XL, the file META_OR_GAS produces the RE ORp and 

the respective 95% CI.



Example - MTHFR C677T and Breast Cancer

In plotting the results, the y-axis depicts the studies 

and the x-axis the ORs with the respective 95% CIs, the 

x-axis is always shown in logarithmic scale for making 

the visual presentation easy. The FE and RE pooled 

estimates are also shown.
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Practice in SPSS

Copy-paste the data from XL file META_OR to SPSS. 

Then, in SPSS, the graph is contracted as follows: 



Practice

A GAS investigating the association between the alleles ADH2*1 (mt) 

and ADH2*2 (wt) with alcoholism produced the following genotype 

distributions:
ADH2

*1/*1 *1/*2 *2/*2

Year Author Racial alcoholic healthy alcoholic healthy alcoholic healthy

1993 Sherman Caucasian 7 18 19 3 19 2

1994 Muramatsu Chinese 13 12 8 43 11 50

1994 Thomasson Taiwan 3 1 28 10 63 54

1995 Maezawa Japanese 30 2 28 22 38 36

1996 Chen Taiwan 14 0 15 19 17 44

1996 Higuchi Japanese 204 33 224 160 227 268

1997 Espinós Caucasian 62 58 9 12 0 1

1999 Chen CC Chinese 130 43 106 205 104 297

2000 Chao Taiwan 51 17 129 102 101 122

2001 Lee Korean 10 6 32 18 64 40

2001 Ogurtsov Caucasian 56 15 51 29 3 6

Perform a full meta-analysis of the GAS. 



Dealing with heterogeneity – Subgroup analysis

Heterogeneity can be attributed to various 

characteristics of the individual GAS included in 

the meta-analysis (such race, clinical settings, 

study quality, etc). 

One way to deal with heterogeneity is to perform a 

subgroup analysis by each characteristic and to 

explore which characteristic contributes to study 

heterogeneity. 



Example - MTHFR C677T and Breast Cancer

Cases Controls

i Population mt/mt Total mt/mt Total ORi θi=ln(ORi) vi wi=1/vi

1 study1 Whites 15 66 11 57 1.23 0.21 0.199 5.03

2 study2 Whites 43 315 23 233 1.44 0.37 0.075 13.30

3 study3 E. Asians 25 190 12 193 2.29 0.83 0.135 7.41

4 study4 E. Asians 94 514 65 495 1.48 0.39 0.031 32.54

5 study5 E. Asians 32 186 17 147 1.59 0.46 0.104 9.59

6 study6 Whites 7 88 24 342 1.15 0.14 0.200 5.00

7 study7 E. Asians 343 1312 196 1160 1.74 0.55 0.010 99.14

8 study8 Whites 43 318 74 410 0.71 -0.34 0.043 23.05

9 study9 Whites 27 334 50 551 0.88 -0.13 0.062 16.05

10 study10 Whites 8 233 13 298 0.78 -0.25 0.210 4.76

11 study11 E. Asians 351 1499 155 1104 1.87 0.63 0.011 89.08

However, in studies 3, 4, 5, 7 and 11 the origin of the population 

was East Asians and in the rest studies the population was 

Whites. 

We would like to explore whether “race” contributes to study 

heterogeneity. 



1) Subgroup analysis for East Asians

For East Asians, the pooled OR is

FE ORp=1.76 with 95% CI (1.55, 2.00)

The P-value of Q (heterogeneity test) is PQ=0.75. 

Thus, there is no significant heterogeneity across 

studies (since PQ≥0.10) and only the FE OR will be 

considered (note that RE OR coincides with the FE OR). 



2) Subgroup analysis for Whites

For Whites, the pooled OR is

FE ORp=0.94 with 95% CI (0.74, 1.19)

The P-value of Q (heterogeneity test) is PQ=0.41. 

Thus, there is no significant heterogeneity across 

studies (since PQ≥0.10) and only the FE OR will be 

considered.



The subgroup analysis for East Asians produced 

absolutely different results from the Whites 

E. Asians ORp=1.76 (1.55, 2.00) and PQ=0.75

Whites vs. ORp=0.94 (0.74, 1.19) and PQ=0.41

This diversity in ORp and the lack of heterogeiety in 

subgroup analyses implies that “race” has a 

significant effect in the overall meta-analysis and 

contributes in the heterogeneity across studies. 



Practice in XL

In XL, the file META_OR_GAS produces the FE ORp and RE ORp 

with the respective 95% CIs for each subgroup (for analyzing the 

East Asians, just delete the respective rows with the Whites and 

change the n from 11 to 5). Close the file without saving it. 



For analyzing the Whites, open the file META_OR_GAS and just 

delete the respective rows with the East Asians and change the n 

from 11 to 6. Close the file without saving it. 



Practice

A GAS investigating the association between the alleles ADH2*1 

(mt) and ADH2*2 (wt) with alcoholism produced the following 

genotype distributions:
ADH2

*1/*1 *1/*2 *2/*2

Year Author Racial alcoholic healthy alcoholic healthy alcoholic healthy

1993 Sherman Caucasian 7 18 19 3 19 2

1994 Muramatsu Chinese 13 12 8 43 11 50

1994 Thomasson Taiwan 3 1 28 10 63 54

1995 Maezawa Japanese 30 2 28 22 38 36

1996 Chen Taiwan 14 0 15 19 17 44

1996 Higuchi Japanese 204 33 224 160 227 268

1997 Espinós Caucasian 62 58 9 12 0 1

1999 Chen CC Chinese 130 43 106 205 104 297

2000 Chao Taiwan 51 17 129 102 101 122

2001 Lee Korean 10 6 32 18 64 40

2001 Ogurtsov Caucasian 56 15 51 29 3 6

Perform subgroup analysis by “race”. 



Sensitivity analysis for studies of poor quality

The sensitivity analysis examines the effect of 

excluding specific studies from the meta-analysis, ie 

examines the impact of excluding these studies in the 

pooled estimate of OR and in heterogeneity. 



Sensitivity analysis for studies of poor quality

Inspection of whether genotype frequencies of 

controls (disease-free subjects) conform to Hardy-

Weinberg equilibrium (HWE) provides an indication of 

the quality in the design and conduct of GAS. 

Departures from HWE can be due to: 

-genotyping errors, 

-population stratification (population 

stratification includes differences 

between groups of ethnic origin or 

differences between groups of 

similar ethnic origin but with a limited 

admixture) and

-selection bias in the recruitment of controls



Example - MTHFR C677T and Breast Cancer

Cases Controls

i mt/mt Total mt/mt Total ORi θi=ln(ORi) vi wi=1/vi

1 study1 15 66 11 57 1.23 0.21 0.199 5.03

2 study2 43 315 23 233 1.44 0.37 0.075 13.30

3 study3 25 190 12 193 2.29 0.83 0.135 7.41

4 study4 94 514 65 495 1.48 0.39 0.031 32.54

5 study5 32 186 17 147 1.59 0.46 0.104 9.59

6 study6 7 88 24 342 1.15 0.14 0.200 5.00

7 study7 343 1312 196 1160 1.74 0.55 0.010 99.14

8 study8 43 318 74 410 0.71 -0.34 0.043 23.05

9 study9 27 334 50 551 0.88 -0.13 0.062 16.05

10 study10 8 233 13 298 0.78 -0.25 0.210 4.76

11 study11 351 1499 155 1104 1.87 0.63 0.011 89.08

Only in study 5, the HWE was marginally significant (P=0.07) and 

thus a sensitivity analysis was performed for this study. 



In Sensitivity analysis, 

PQ=0.001. 

RE ORp=1.33 with 95% CI (1.05, 1.69). 

In the full analysis, 

PQ=0.002 which was significant (PQ<0.10). 

RE ORp=1.35 with 95% CI (1.08, 1.69)

Thus, exclusion of the study not in HWE does not 

change the pattern of results of the full analysis. 



Practice in XL

In XL, the file META_OR_GAS produces the FE ORp and RE ORp 

with the respective 95% CIs for sensitivity analysis (just delete the 

row corresponding to Study 5 and change the n from 11 to 10). 



Practice

A GAS investigating the association between the alleles ADH2*1 

(mt) and ADH2*2 (wt) with alcoholism produced the following 

genotype distributions:
ADH2

*1/*1 *1/*2 *2/*2

Year Author Racial alcoholic healthy alcoholic healthy alcoholic healthy

1993 Sherman Caucasian 7 18 19 3 19 2

1994 Muramatsu Chinese 13 12 8 43 11 50

1994 Thomasson Taiwan 3 1 28 10 63 54

1995 Maezawa Japanese 30 2 28 22 38 36

1996 Chen Taiwan 14 0 15 19 17 44

1996 Higuchi Japanese 204 33 224 160 227 268

1997 Espinós Caucasian 62 58 9 12 0 1

1999 Chen CC Chinese 130 43 106 205 104 297

2000 Chao Taiwan 51 17 129 102 101 122

2001 Lee Korean 10 6 32 18 64 40

2001 Ogurtsov Caucasian 56 15 51 29 3 6

Perform a sensitivity analysis for GAS with the controls not in HWE.



If we are interested in examining the impact of the 

biggest studies in the meta-analysis results, then we 

perform a sensitivity analysis, i.e. we exclude these 

studies from the meta-analysis and we re-calculated 

the pooled estimate of the treatment difference and 

the heterogeneity test.

Sensitivity analysis for big studies



Example - MTHFR C677T and Breast Cancer

Cases Controls

i mt/mt Total mt/mt Total ORi θi=ln(ORi) vi wi=1/vi

1 study1 15 66 11 57 1.23 0.21 0.199 5.03

2 study2 43 315 23 233 1.44 0.37 0.075 13.30

3 study3 25 190 12 193 2.29 0.83 0.135 7.41

4 study4 94 514 65 495 1.48 0.39 0.031 32.54

5 study5 32 186 17 147 1.59 0.46 0.104 9.59

6 study6 7 88 24 342 1.15 0.14 0.200 5.00

7 study7 343 1312 196 1160 1.74 0.55 0.010 99.14

8 study8 43 318 74 410 0.71 -0.34 0.043 23.05

9 study9 27 334 50 551 0.88 -0.13 0.062 16.05

10 study10 8 233 13 298 0.78 -0.25 0.210 4.76

11 study11 351 1499 155 1104 1.87 0.63 0.011 89.08

A sensitivity analysis was performed for biggest studies (e.g. 

Studies 4, 7 and 11) and the meta-analysis results are as follows: 



In the Sensitivity analysis,

FE ORp=1.07 with 95% CI (0.87, 1.33)

RE ORp=1.13 with 95% CI (0.85, 1.52)

PQ=0.10 which is marginally significant. 

In the full analysis, 

PQ=0.002 which was significant (PQ<0.10). 

RE ORp=1.35 with 95% CI (1.08, 1.69)

Thus, the exclusion of Studies 4, 7 and 11 changes the 

pattern of results in the estimation of the pooled 

estimate of the treatment difference and in 

heterogeneity. 



Practice in XL

In XL, the file META_OR_GAS produces the FE ORp and RE ORp 

with the respective 95% CIs for sensitivity analysis (just delete the 

row corresponding to Studies 4, 7 and 11 and change the n from 11 

to 8).



The pooled estimate of OR can be systematically 

influenced by the selection of studies for inclusion in 

the meta-analysis. 

Then, in the meta-analysis, bias may be introduced in 

two different ways: 

A) by including studies which have themselves 

produced biased estimates of the OR, and 

B) by excluding eligible studies because the 

relevant data are not available.

Selection bias



A) The individual studies with biased estimates of          

the OR may introduce bias in meta-analysis due to: 

-The inclusion of studies with methodological      

flaws (such as inappropriate patient selection) 

-The chronological order in which studies are 

conducted. Small early studies may produce 

larger estimates of OR than from later larger 

studies.

Bias in individual  GAS



B) The data of eligible studies can be missing due to 

Publication bias. 

Publication bias is introduced when the meta-

analysis is restricted to the synthesis of results 

obtained only from studies which have been 

published. 

Publication bias



-Often, the decision to submit or accept a paper with 

the results of a GAS for publication in a journal is 

influenced by the significance of results: 

a large GAS with significant OR is more likely 

to be published than a small GAS with non-

significant OR. 

-Also, GAS indicating that an wt/wt plays a role in 

disease development are less likely to be published 

than those indicating that mt-carriers a role in 

disease development. 

A remedy to deal with selection bias is to perform a 

Sensitivity analysis. 



Funnel plot

The simplest and most commonly used method to 

detect publication bias is an informal examination of a 

funnel plot.

A funnel plot is a plot of each study's θi=ln(ORi) 

against the precision (expressed as 1/SEi). 



In the absence of publication bias, this plot will 

resemble a symmetrical inverted shaped like a funnel. 

Then, the spread of results will be wide at the bottom 

of the graph where small studies are placed, and will 

become narrower as the studies become larger.



This funnel shape is expected because GAS of 

smaller size (which are more numerous) have 

increasingly large variation (ie small precision) in the 

estimates of their ln(OR). 

Note that a small GAS has a large SE and small 

precision since precision= 1/SE. 



However, since smaller 

or nonsignificant GAS 

are less likely to be 

published, GAS in the 

bottom left hand corner 

(when a undesirable 

outcome is being 

considered, e.g. wt/wt is 

related to the disease) 

of the plot are often 

omitted, creating a 

degree of asymmetry in 

the funnel.

Thus, an asymmetry in funnel plot indicates the 

existence of publication bias. 



Example - MTHFR C677T and Breast Cancer

Cases Controls

i mt/mt Total mt/mt Total ORi θi=ln(ORi) vi wi=1/vi

1 study1 15 66 11 57 1.23 0.21 0.199 5.03

2 study2 43 315 23 233 1.44 0.37 0.075 13.30

3 study3 25 190 12 193 2.29 0.83 0.135 7.41

4 study4 94 514 65 495 1.48 0.39 0.031 32.54

5 study5 32 186 17 147 1.59 0.46 0.104 9.59

6 study6 7 88 24 342 1.15 0.14 0.200 5.00

7 study7 343 1312 196 1160 1.74 0.55 0.010 99.14

8 study8 43 318 74 410 0.71 -0.34 0.043 23.05

9 study9 27 334 50 551 0.88 -0.13 0.062 16.05

10 study10 8 233 13 298 0.78 -0.25 0.210 4.76

11 study11 351 1499 155 1104 1.87 0.63 0.011 89.08

We could test for publication bias graphically using XL
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The funnel plot shows some symmetry and therefore, 

there might be an indication of lack of publication bias. 



Practice in SPSS

Copy-paste the data from XL file META_OR_GAS to 

SPSS. Then, the funnel plot for exploring the existence 

of publication bias can be drawn in SPSS: 



Egger’s test

A formal test for publication bias can be based on 

linear regression analysis (Egger’s test). In particular, 

the following regression line is fitted: 

i i
y a bx  for i=1 to n, where n is the number of studies 

i i i
y w 

i i
x w

yi is the standardized estimate of θi: 

,

xi is the precision: 

i i i
w a b w  



A test of publication bias would be a test whether the 

intercept a is equal to zero. 

The intercept, a, provides a measure of funnel plot 

asymmetry: the larger its deviation from zero, the more 

pronounced is the asymmetry of the funnel plot (ie 

existence of publication bias). 

i i i
w a b w  



The intercept a and slope b can be obtained by 

performing a typical least-squares regression of yi 

on xi (using SPSS). 

Then, in testing whether the intercept a is 0, the 

statistic is t=a/SE(a) compared against the 5% point 

of the t-distribution with n-2 df. 

Thus, if t is less than the 5% point of the t-

distribution with n-2 df, there is no indication of 

publication bias. 

i i i
w a b w  



Example - MTHFR C677T and Breast Cancer

Cases Controls

i mt/mt Total mt/mt Total ORi θi=ln(ORi) vi wi=1/vi

1 study1 15 66 11 57 1.23 0.21 0.199 5.03

2 study2 43 315 23 233 1.44 0.37 0.075 13.30

3 study3 25 190 12 193 2.29 0.83 0.135 7.41

4 study4 94 514 65 495 1.48 0.39 0.031 32.54

5 study5 32 186 17 147 1.59 0.46 0.104 9.59

6 study6 7 88 24 342 1.15 0.14 0.200 5.00

7 study7 343 1312 196 1160 1.74 0.55 0.010 99.14

8 study8 43 318 74 410 0.71 -0.34 0.043 23.05

9 study9 27 334 50 551 0.88 -0.13 0.062 16.05

10 study10 8 233 13 298 0.78 -0.25 0.210 4.76

11 study11 351 1499 155 1104 1.87 0.63 0.011 89.08



Practice in SPSS

Copy-paste the data from XL file META_OR to SPSS. 

Then, a typical least-squares regression of  on is 

fitted (i.e. we fit a regression line of xi on yi) to obtain 

the intercept a and slope b using SPSS as follows: 



The produced output with the results of the regression analysis is 

shown below: 

The P-value for testing whether the intercept a is 0 is P=0.109, 

i.e. the intercept a is not significant since P≥0.05. 

Therefore, there is no significant publication bias in the meta-

analysis. 



Practice

A GAS investigating the association between the alleles ADH2*1 

(mt) and ADH2*2 (wt) with alcoholism produced the following 

genotype distributions:
ADH2

*1/*1 *1/*2 *2/*2

Year Author Racial alcoholic healthy alcoholic healthy alcoholic healthy

1993 Sherman Caucasian 7 18 19 3 19 2

1994 Muramatsu Chinese 13 12 8 43 11 50

1994 Thomasson Taiwan 3 1 28 10 63 54

1995 Maezawa Japanese 30 2 28 22 38 36

1996 Chen Taiwan 14 0 15 19 17 44

1996 Higuchi Japanese 204 33 224 160 227 268

1997 Espinós Caucasian 62 58 9 12 0 1

1999 Chen CC Chinese 130 43 106 205 104 297

2000 Chao Taiwan 51 17 129 102 101 122

2001 Lee Korean 10 6 32 18 64 40

2001 Ogurtsov Caucasian 56 15 51 29 3 6

Test for publication bias the GAS included in the meta-analysis.



Cumulative and recursive cumulative meta-analysis

Cumulative and recursive cumulative meta-

analyses is another way to explore heterogeneity in 

risk effect for a genetic model in time. 

They provide a framework for updating a genetic 

effect from all studies and a measure of how much 

the genetic effect changes as evidence 

accumulates. 



In cumulative meta-analysis, studies are ordered 

by publication year, and then, the pooled OR is 

obtained when a new study is published. 

Thus, cumulative meta-analysis indicates the 

trend in estimated risk effect. 

Cumulative meta-analysis



Recursive cumulative meta-analysis

In recursive cumulative meta-analysis, the relative 

change in cumulative pooled OR in each publication 

year is calculated (cumulative OR in next year/ 

cumulative OR in current year). 

Thus, recursive cumulative meta-analysis indicates 

the stability in risk effect. 

Wide oscillations in risk effect early in the course of 

accumulating evidence are usually associated with 

major changes in risk effect in the future. 

If the oscillations remain in time then more 

information is required to draw safe conclusion on 

the magnitude of the risk effect. 



Example

A meta-analysis for 

investigating the association 

between alcoholism and the 

ADH3 (wt=*1, mt=*2) gene 

polymorphism for the 

recessive model (*2/*2 vs. rest) 

produced significant 

heterogeneity (p<0.01) and 

OR=1.32 (1.12-1.57)



The cumulative meta-analysis for the recessive model 

showed a trend of association as information 

accumulates: 
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In recursive cumulative meta-analysis, the relative change in OR 

fluctuated around the value of OR=1.0, and it stabilizes after 

information step 2000/2001. 

The scatter of the relative changes in OR is wider at the 

beginning, and then, it shrinks as evidence accumulates. 

This stability indicates that there is enough evidence to draw safe 

conclusion about the risk effect of ADH3 gene polymorphism in 

alcoholism. 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

199
1/

19
90

199
2/

19
91

199
3/

19
92

199
4/

19
93

199
6/

19
94

199
7/

19
96

199
8/

19
99

199
9/

20
00

200
0/

20
01

200
1/

20
02

200
2/

20
03

200
3/

20
02

200
4/

20
03

R
el

at
iv

e 
ch

an
g

e 
in

 O
R

  
  

  
  



The other genetic models 

The meta-analysis of the other genetic models 

(dominant, additive, co-dominant) is similar to the 

recessive model. 

When more than on model is significant, the 

identification of the mode of inheritance can be 

based on the heuristic algorithm presented in the 

“Analysis of GAS” course. 



Genetic model-free approach

A genetic model-free approach for testing the 

association between disease status (disease vs. 

healthy) and genotype is the generalized odds ratio 

(ORG).

The ORG is a single statistic that utilizes the 

complete genotype distribution (not merging 

genotypes like in the co-dominant model) and 

provides an estimate of the overall risk effect.



Definition of ORG 

ORG is the probability of a subject being diseased 

relative to probability of being free of disease, given 

that the diseased subject has a higher mutational 

load than the non-diseased. 

G

Probability being diseased, diseased hashigh mutational load
OR =

Probability of being non-diseased, non-diseased has low mutational load

When ORG>1 then an increased genetic exposure 

(mutational load) implies disease.



ORGGASMA

“ORGGASMA”: a software for implementing the 

generalized odds ratio methodology for the analysis 

and meta-analysis of GAS. 

The software “ORGGASMA” (together with 

instructions how to operate it) is freely available and it 

can be downloaded form the web site 

http://biomath.med.uth.gr

Download the “ORGGASMA” software and operated it 

only for the “cmd” command of windows (do not 

double click the icon).



Example – MTHFR C677T and Breast Cancer

Eleven GAS were conducted to investigate the association 

between MTHFR C677T  (wt=C and mt=T) variant and 

susceptibility to breast cancer (BC). The data are as follows: 

Breast Cancer Helathy controls

MTHFR 

C677T

GAS

Race TT TC CC TT TC CC

1 Whites 15 23 28 11 21 25

2 Whites 43 162 110 23 92 118

3 E. Asians 25 85 80 12 87 94

4 E. Asians 94 242 178 65 215 215

5 E. Asians 32 96 58 17 80 50

6 Whites 7 38 43 24 145 173

7 E. Asians 343 695 274 196 577 387

8 Whites 43 140 135 74 196 140

9 Whites 27 141 166 50 259 242

10 Whites 8 91 134 13 104 181

11 E. Asians 351 786 362 155 509 440

Is there evidence that the variant MTHFR C677T is associated 

with the development of BC?



Prior to meta-analysis, we will make an 

assumption: 

Subjects who are homozygous for TT allele have 

the highest mutational load, those homozygous 

for CC allele have the lowest, and heterozygous 

CT have an intermediate level. 

MTHFR C677T and Breast Cancer



In ORGGASMA, the data are stored in the file “ORGgenotypes.txt” 

at the same folder with the ORGGASMA.exe file. 



The meta-analysis results were the following (the 

results were saved in the file “outputORG.txt”): 

The heterogeneity between studies was significant P<0.10. 

Then, the random effects (RE) model generalized OR was ORG=1.26 

(1.02, 1.55). 

Since 1 is not included in the 95% CI the ORG is significant.



ORG=1.26

The interpretation of the finding is as follows: 

For any two subjects, diseased with BC and 

healthy, the probability of being diseased is 26% 

higher (relative to the probability of being non-

diseased) given that the diseased subject has 

higher mutational load for the variant MTHFR 

C677T than the healthy one.

Thus, an increased genetic exposure (mutational 

load) implies disease.



Subgroup analysis by “race”

A subgroup analysis for each “race” can be 

performed in a similar way to the full analysis.   

Sensitivity analysis 

A sensitivity analysis can be performed for the 

study 5 where the controls are in HWE marginally. 



Practice

A GAS investigating the association between the alleles ADH2*1 

(mt) and ADH2*2 (wt) with alcoholism produced the following 

genotype distributions:
ADH2

*1/*1 *1/*2 *2/*2

Year Author Racial alcoholic healthy alcoholic healthy alcoholic healthy

1993 Sherman Caucasian 7 18 19 3 19 2

1994 Muramatsu Chinese 13 12 8 43 11 50

1994 Thomasson Taiwan 3 1 28 10 63 54

1995 Maezawa Japanese 30 2 28 22 38 36

1996 Chen Taiwan 14 0 15 19 17 44

1996 Higuchi Japanese 204 33 224 160 227 268

1997 Espinós Caucasian 62 58 9 12 0 1

1999 Chen CC Chinese 130 43 106 205 104 297

2000 Chao Taiwan 51 17 129 102 101 122

2001 Lee Korean 10 6 32 18 64 40

2001 Ogurtsov Caucasian 56 15 51 29 3 6

Perform a full meta-analysis of the GAS, a subgroup analysis by 

“race” and sensitivity analysis for GAS with the controls not in HWE. 



HEGESMA 

METRADISC



Genome Wide Association Studies 

(GWAS)



500-1000 cases 500-1000 controls

• Calculate which of the alleles of 300-500,000 

SNPs) are more frequent in cases than controls

GWAS is scan of genomic sequence variants which enable 

to examine hundreds of thousands of SNPs in cases and 

controls



Whole Genome Scans or

Genome Linkage Scans

(WGS)



WGS is a technique to determine 

linkage of complex disease using 

families of sibling pairs with the 

disease

~400 microsatellite (tandem 

repeat sequence) markers 

across the genome evenly 

spaced every 10 cM= 1million 

base pairs (bps)



WGS Identifies “linkage peak” with 
extensive allele sharing in a 
cohort of sibling pairs with 
the disease. 

Steps:
1) >300 families with >1000 

affected individuals

2) Logarithm of odds ratio (LOD) 
score >3 for each
marker
i.e. large probability of
allele sharing in sibling pairs 
(of linkage for the
marker)

Significant linkage peak => gene(s) 
in LD with a marker



Genome scans on complex diseases have

produced inconclusive inferences:  

– linkage signals tend to be rather weak

– number of families and affected sibpairs 
are relatively small

– individual genome scans identify linkage 
in different chromosomal regions



HEGESMA

(Zintzaras and Ioannidis 2005 Genetic Epidemiology, Bioinformatics)

HEGESMA is a method for synthesizing data 

from diverse genome scans



HEGESMA starts by splitting the chromosomes into 

bins of approximately equal length: 

- each bin has a width of 30 cM 

- 120 bins in total for the whole genome



For each genome scan, the highest LOD score 

obtained within the bin is recorded.



• For each scan the bins are ranked according to 

their LOD score.

• Assign with 120 to the highest linkage score and 

with 1 the lowest. 

• The ranks for each bin are averaged across scans:  

R=ΣRi/s

Ri is the rank of a bin for study i (i=1 to s studies)

The method



The method



The significance of the average rank R of each bin 

is assessed against the distribution of average 

ranks using a Monte-Carlo permutation method.



The significance of the averaged bin ranks were 

assessed against the null distribution using a 

large number of random permutations.



When a specific bin has a high average rank then 

there is evidence for the importance of this bin for 

linkage with the disease



Broeckel, 2002 Germany 513 (51.6-56.1)± 

(0.4-2.4)

394 0.22 14q

Wang, 2004 Caucasians 428 44.4±9.7 408 0.2 1p34-36, 2p11, 

4q32, 5p14, 7q22, 

12q24, 13q32, 

14q24

Helgadottir, 2004 Iceland 93 Early onset 1068 0.28 13q12-13

50.7±7.9 for 

males

53.4±7.8 for 

females

0.15 2p11.2 – 2q21.1

Mixed (93.1% 

Caucasians)

Samani, 2005 UK 847 398

Markers Weighting Location with 

evidence of linkage

Hauser, 2004 228 <51 for males, 

<56 for 

females

395 0.15 1q25, 3q13, 19p13

First Author, 

publication year

Ethnicity Pedigrees Age (years)

Identification of chromosomal regions linked to 

premature MI using HEGESMA
(Zintzaras and Kitsios 2006, J Hum Genet)

• Characteristics and major results of premature Myocardial Infarction 

(MI) genome-scans



Unweighted (open circle) and weighted for the number of 

pedigrees (filled circle) average ranks from five premature 

Myocardial Infarction genome-scans with 120 bins. 

Bins with significant Prank in unweighted or weighted analysis 

are above the line at P<0.05.



The meta-analysis replicated the significance of 4  

already reported chromosomal regions:

• Bin 13.4 (13q33.1-13q34): F7, F10 and IRS2 (CAD) 

• Bin 5.1 (5p15.33-5p15.1): MTRR 

• Bin 1.2 (1p36.21-1p35.2): MTHFR and ECE1

• Bin 12.6 (12q24.31-12q24.33): SCARB1

Four new candidate regions were identified: 

• Bin 8.6 (8q24.21-8q24.3):  CYP11B2 

• Bin 8.4 (8q13.2-8q22.2): a novel region 

• Bin 6.2 (6p22.3-6p21.1): MOG, HSPA1A, LTA, TNF, 
AGER, HFE, HLA-DR and C4 

• Bin 14.1(14p13-14q13.1): CAQ14 and PSMA6
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aa Chrom Bin Scan1 Scan2 Scan3 aa Chrom Bin Scan1 Scan2 Scan3 aa Chrom Bin Scan1 Scan2 Scan3

1 1 1.1 33.5 59 94 41 5 5.5 88 98 42 81 12 12.3 33.5 70 42

2 1 1.2 33.5 60 42 42 5 5.6 33.5 63 105 82 12 12.4 101 25 42

3 1 1.3 83 25 42 43 6 6.1 33.5 50 42 83 12 12.5 94 86 42

4 1 1.4 78 25 42 44 6 6.2 33.5 109 42 84 12 12.6 33.5 25 110

5 1 1.5 33.5 107 42 45 6 6.3 33.5 97 42 85 13 13.1 103 25 92

6 1 1.6 69 84 112 46 6 6.4 33.5 116 42 86 13 13.2 81 25 42

7 1 1.7 33.5 87 98 47 6 6.5 110 108 96 87 13 13.3 33.5 25 42

8 1 1.8 33.5 65 42 48 6 6.6 96 118 106 88 13 13.4 33.5 105 42

9 1 1.9 33.5 88 42 49 7 7.1 104 25 118 89 14 14.1 33.5 75 90

10 1 1.10 33.5 69 42 50 7 7.2 93 53 42 90 14 14.2 33.5 78 42

11 2 2.1 33.5 25 93 51 7 7.3 33.5 25 42 91 14 14.3 33.5 100 42

12 2 2.2 87 25 42 52 7 7.4 84 51 42 92 14 14.4 99 25 42

13 2 2.3 33.5 64 42 53 7 7.5 77 25 42 93 15 15.1 33.5 95 91

14 2 2.4 33.5 114 42 54 7 7.6 86 68 104 94 15 15.2 33.5 81 42

15 2 2.5 33.5 102 42 55 8 8.1 33.5 76 42 95 15 15.3 111 99 42

16 2 2.6 33.5 119 107 56 8 8.2 73 111 42 96 15 15.4 113 25 42

17 2 2.7 33.5 104 42 57 8 8.3 74 94 42 97 16 16.1 75 25 42

18 2 2.8 33.5 115 42 58 8 8.4 33.5 25 42 98 16 16.2 76 74 42

19 2 2.9 33.5 93 42 59 8 8.5 33.5 25 42 99 16 16.3 33.5 25 42

20 2 2.10 109 96 116 60 8 8.6 33.5 25 102 100 16 16.4 33.5 25 101

21 3 3.1 33.5 25 42 61 9 9.1 33.5 25 117 101 17 17.1 33.5 25 42

22 3 3.2 33.5 57 108 62 9 9.2 68 25 42 102 17 17.2 33.5 25 42

23 3 3.3 71 25 42 63 9 9.3 33.5 73 42 103 17 17.3 33.5 25 42

24 3 3.4 70 25 42 64 9 9.4 33.5 113 42 104 17 17.4 33.5 25 109

25 3 3.5 89 77 42 65 9 9.5 33.5 103 42 105 18 18.1 117 91 113

26 3 3.6 98 62 42 66 9 9.6 107 90 42 106 18 18.2 114 25 42

27 3 3.7 33.5 25 42 67 10 10.1 33.5 72 97 107 18 18.3 91 106 42

28 3 3.8 33.5 52 119 68 10 10.2 33.5 92 42 108 18 18.4 33.5 56 42

29 4 4.1 105 25 84 69 10 10.3 116 67 42 109 19 19.1 67 61 100

30 4 4.2 100 25 42 70 10 10.4 119 66 42 110 19 19.2 33.5 25 42

31 4 4.3 80 25 42 71 10 10.5 106 25 42 111 19 19.3 33.5 25 42

32 4 4.4 95 25 42 72 10 10.6 102 25 95 112 19 19.4 33.5 25 99

33 4 4.5 92 25 87 73 11 11.1 33.5 25 111 113 20 20.1 90 25 42

34 4 4.6 82 80 103 74 11 11.2 108 58 42 114 20 20.2 85 54 42

35 4 4.7 79 110 42 75 11 11.3 115 25 42 115 20 20.3 33.5 55 42

36 4 4.8 72 89 114 76 11 11.4 118 117 42 116 20 20.4 33.5 25 120

37 5 5.1 33.5 25 42 77 11 11.5 33.5 120 42 117 21 21.1 33.5 85 89

38 5 5.2 33.5 25 88 78 11 11.6 33.5 101 42 118 21 21.2 33.5 79 42

39 5 5.3 33.5 83 42 79 12 12.1 33.5 25 115 119 22 22.1 112 25 85

40 5 5.4 97 112 86 80 12 12.2 33.5 71 42 120 22 22.2 120 82 42

Practice

The ranks of 3 WGS in  preeclampsia are as follows: 

Identify significant bins linked to preeclampsia
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Download the file “HEGESMA_v2.0.exe” from the URL http://biomath.med.uth.gr/

Create the file “xxx.dat” with the input data and put in the same directory with the 

“HEGESMA_v2.0.exe” file

Then, open the DOS prompt using the “cmd” command 

Execute the program “HEGESMA_v2.0.exe” 

http://biomath.med.uth.gr/
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The output file is named “monte_unweight” 

In order to open the file “monte_unweight”, open the 

Word and then, open the file.  

Bins with P<0.05 are linked to preeclampsia



Microarrays



DNA microarrays consist of probes for 

measuring the expression of thousands of 

genes in cases and controls.  

Over- or under-expressed genes may play a 

role in disease pathogenesis. 



The analysis of microarray data involve:

i) transformation of the data (e.g. log-

transformation and normalization-removing 

systematic effects and bringing data from 

different microarrays onto a common scale).  

ii) assessment of whether there is differential 

expression between diseased and normal 

tissue using a generalization of the t-test to 

adjust for multiple comparisons.  

iii) Calculation of a P-value (false positive rate) or 

a Q-value (false discovery rate) 

(Q=(Pxn)/i, n=number of genes, i=sorted rank of 

P-value)



Inferences are limited by 

i) small sample sizes and 

ii) inconsistent results across studies.  

iii) weakness of associations for each single gene

vi) datasets obtained with different 

a) experimental conditions, 

b) platforms, 

c) analysis techniques, 

d) types of samples (e.g. different tissue, 

different treatment conditions, and even 

different species). 

v) genes under study may also overlap, but not be      

identical across studies.



METRADISC
(Zintzaras and Ioannidis 2008 Comp Biol Chem )

METRADISC is a generalized meta-analysis 

method for combining information across 

microarrays datasets



The average rank (R*) for each gene 

expression across studies is  calculated 

based on the adjusted ranks (adjusted by the 

maximum number of tested genes in any of 

the combined studies).  

R*=(ΣRi)/s

where Ri is the rank of the gene under 

investigation for study i (i=1 to s studies). 

Average metric



The statistical significance of the metric R* is  assessed 
using a Monte Carlo method: 

i) the ranks of each study are randomly 
permuted 

ii) the simulated metric R* is calculated

iii) the procedure is repeated to generate null 
distributions for the metric R*. 

iv) each gene is tested against the null 
distribution corresponding to the same class 
of information

(i.e. gene with information from a number of 
specific studies are tested against the null 
distribution derived from these specific 
studies). 

Monte Carlo permutation test



METRADISC is interested in identifying genes 

that have either very high average ranks (i.e. 

over-expressed) or very low average ranks 

(i.e. under-expressed). 



Empirical demonstration

Seven prostate cancer microarray studies

A total of only 1863 distinct genes were common in all studies. 

There were 13580 different genes in the combined datasets.

These genes belonged to 132 information classes. 

Study Investigator Controls Cases
Distinct 

genes

1 Dhanasekaran 22 59 6414

2 Lapointe 41 62 9756

3 Luo 9 16 5026

4 Ramaswamy 90 190 8958

5 Singh 50 52 6824

6 Welsh 9 25 7107

7 Yu 23 64 7763



Average rank (R*)

Right-sided right-sided left-sided left-sided

P<0.0000037* P<0.001 P<0.0000037* P<0.001

N=22 N=192 N=33 N=245

METRADISC results

*P<0.05 adjusted for 13580 genes



Genomic Convergence
(Kitsios & Zintzaras 2009 Ann Hum Genet)



Is there Genomic Convergence?
Do all methods agree in their results?

GAS, GWAS and WGS have produced inconsistent results across them.

CAD and/or MI Hypothesis-free Hypothesis-driven

Approaches WGS GWAS GAS

No of studies

10 (6 MI, 4 CAD and MI) and 

2 meta-analyses (MI, 

MI and CAD)

5 (2 MI, 3 CAD and MI)
1018 and 18 meta-

analyses

No of markers/genes 

investigated
400 markers/scan

>20,000 genes (>500,000 

SNPs)
203 genes

No of significant findings
40 regions showing linkage 

(LOD>2)
15 SNPs (p<10E-06)

17 genes (based on 

meta-analyses)

Replicated findings across 

approaches

9p21.3 (Chr9 at 18-48cM) with 4 SNPs: 

rs1333049 C/G (risk allele: C) 

rs10757274 A/G (risk allele: G)

rs2383206 A/G (risk allele: G)

rs10757278 A/G (risk allele: G)

(Wang 2004, Samani 2007, Helgadottir 2007, McPherson 

2007, WTCCC 2007)



Determination of genetic variants in 

association to disease susceptibility can 

only be verified when there is replication 

validity within and between studies of the 

same and different design



GENOMIC

CONVERGENCE

Candidate-gene

studies

Genome-wide 

association 

studies

Microarrays 

gene expression 

studies

Whole-genome 

scans

Genetic 

testing

establishment

Gene therapy

Enzyme 

specific 

treatment

(Kitsios and Zintzaras 2009 Ann Hum Genet)


